Отметим еще полевые транзисторы на углеродных нанотрубках – важное для наноэлектроники направление. Углеродные нанотрубки легко получать, и им находятся все новые и новые применения. Но еще ближе к созданию промышленных устройств подошли разработки на квантовых точках – хотя это уже не столько информатика, сколько оптика.
Информатика тоже, ведь квантовые точки – один из кандидатов на элементную базу квантового компьютера.
– Да, но это, по-видимому, перспектива не менее чем десяти лет. А источники света на квантовых точках – ближайшая перспектива. Упрощенно говоря, квантовая точка – это светодиод, уменьшенный до наноразмера. Сейчас их научились делать очень устойчивыми и долгоживущими. Квантовые точки можно использовать в качестве генераторов лазерного излучения с очень узким спектром, в фотодинамической терапии рака, в качестве маркеров органелл в клетках, – а также для очень экономичных бытовых источников света. Они могут быть очень полезны и в фотонике. Если, скажем, сделать материал из одинаковых правильно упакованных микросфер полистирола или оксида кремния, промежутки заполнить нужными наночастицами, а потом убрать исходную матрицу из микросфер, то получим матрицу, состоящую из квантовых точек, воспроизводящую промежутки между исходными плотноупакованными микросферами. Это будет новый люминесцентный материал, его можно использовать для реализации различных архитектур фотонных компьютеров (фотонный кристалл со структурой обращенной опаловой матрицы).
Энергетика: апдейт противогаза и керамика в эпоксидкеО чем еще вспоминает специалист при упоминании нанотехнологий?
– Конечно, об энергетике. Одно из модных направлений – топливные элементы. Что это такое? Вы можете сжечь спирт, и выделится тепло. А если вы пропустите спирт через топливный элемент – произойдет непосредственное преобразование энергии химической реакции в электрическую энергию. Обычные батарейки делают абсолютно то же самое, но они работают с другими веществами, а топливные элементы (ТЭ) преобразуют обычное топливо в присутствии кислорода. В этих элементах есть особый газопроницаемый слой, где находится катализатор. В качестве катализатора для водородных и метанольных ТЭ особенно эффективны наночастицы платины (5—10 нм).
Вообще катализаторы (вещества, резко ускоряющие ход реакций) – это классическая область химии, которая тесно связана с наночастицами, потому что катализатор должен иметь большую площадь поверхности – хотя бы сотню квадратных метров на грамм! У нас на факультете наук о материалах студенты работают с изопористым диоксидом кремния – там площадь поверхности достигает двух тысяч квадратных метров на грамм.
Здесь, как и вообще в нанотехнологиях, очень важны не просто наночастицы, а наноструктурированные материалы: например, микростержень, на котором растут «нанолисточки». Когда-то Зелинский изобрел противогаз на основе диоксида марганца и оксида меди (гопкалит), в котором угарный газ превращался в СО2. Если эту идею немного додумать, то уже сейчас можно получить нечто полезное для ТЭ. Пусть ваш ТЭ использует метанол и кислород. Полупродуктом окисления метанола является СО. А это страшнейший яд для платины-катализатора. Но если бы удалось платину «посадить» на поверхность кристаллического уса (вискера), содержащего диоксид марганца, то носитель убивал бы яд, опасный для основного катализатора! Это – пример наноструктурированной системы, где есть уровень «нано» (катализатор), уровень «микро» (микронного размера усы, содержащие оксид марганца), а также уровень «макро», когда вы все делаете в виде бумаги, содержащей платину и гибкие вискеры, и каждый уровень по-своему важен и выполняет специфические функции. Все вместе дает материал для ТЭ – платинированную марганец-содержащую бумагу (мы сейчас работаем над таким проектом по Федеральной целевой программе).
В связи с водородной энергетикой тоже идет активный поиск катализаторов для фотодиализа воды – разложения ее на водород и кислород за счет солнечной энергии. Большие усилия направлены и на улучшение солнечных батарей с помощью наночастиц.
Исследуются разные вещества – в том числе сочетания фуллеренов с органическими веществами, диоксидом титана и другими. КПД таких установок растет, но пока они очень дороги.
Солнечные батареи, катализаторы для ТЭ – это все-таки улучшение того, что уже есть. А вот сверхпроводимость – это же новое качество в энергетике! Нанотех здесь применяется?
– Это, пожалуй, вопрос терминологии. Точный ответ таков – в этой задаче принципиально важна структура материала на наномасштабе. Высокотемпературные сверхпроводники – замечательная модель иерархических структур в твердом теле. Там есть уровень «макро» – левитаторы, большие шестигранные шайбы, которые можно уложить так, чтобы они образовали сплошную поверхность, поместить в жидкий азот, и над ними будет что-то «плавать» (например, поезд со сверхпроводящими элементами будет скользить над магнитным рельсом). Есть уровень «микро», который описывает организацию зерен-кристаллитов: несовершенства на границах зерен должны быть минимальны. Крайне важен и уровень «мезо» (субмикро). Потому что именно такой масштаб имеют несовершенства, ответственные за появление вихрей Абрикосова, которые работают как центры пиннинга – без них сверхпроводник второго рода не сможет выдержать сколь-либо значимых критических токов. Спрашивается, что же нового дает уровень нано?
А вот что. Вихри Абрикосова – очень небольшие по размеру. Желательно, чтобы центры пиннинга ("пришпиливания" вихря) были неподвижны. Поэтому порождающие их несовершенства структуры должны иметь как раз наноразмеры. И именно такие включения обнаружились в неодим-содержащих бариевых купратах. Берется твердый раствор (кристаллическая решетка, в которой часть атомов заменена на другие) – и он при определенной термообработке расслаивается, образуя «паркетную» наноструктуру. Она состоит из областей – нанофлуктуаций состава. Там, где больше неодима, возникают несверхпроводящие участки. Там, где меньше неодима, возникает сверхпроводимость. Получаются высокоэффективные центры пиннинга. Группа японских авторов «вморозила» с помощью такой системы сумасшедшее магнитное поле – 14 или 15 тесла! При этом крупнокристаллический высокотемпературный сверхпроводник был залит эпоксидной смолой и помещен в железную шайбу, чтобы магнитное поле не разорвало хрупкую керамику.
Спрашивается – это наноматериал? Нет! Напротив, это крупнокристаллическая керамика (размеры «зерен» до нескольких сантиметров!). Там нет наночастиц. Но там есть нанофлуктуации состава, встроенные в общую иерархию пространственной структуры. Эта замечательная работа, кстати, была сделана еще до бума нанотехнологий.
Между прочим, висмутсодержащие сверхпроводники с нанофлуктуациями состава используются для сверхпроводящих тоководов. Эти материалы прокатываются в ленты, из них делают многожильные кабели, ряд фирм уже выпускает такую продукцию. Сверхпроводящие тоководы работают внутри силовых подстанций и в Германии, и в Штатах, и в Японии. Это очень дорого – и материалы дорогие, и сама линия охлаждается жидким азотом или жидким водородом. Но за длительное время все это может окупиться, благодаря уменьшению энергопотерь.
Просто белилаТо и дело слышим, что некая фирма начинает – "на основе нанотехнологий!" – производить краски, которые обеззараживают воздух и уничтожают вредные примеси. Но ведь такие краски уже лет десять как можно купить в магазине – рублей по сто за банку. Это обычные титановые белила. TiO2 – полупроводник с большой шириной запрещенной зоны. Грубо говоря, если он находится в воде (или контактирует с прилегающим слоем воздуха), то под действием ультрафиолета начинается генерация радикалов, которые убивают органическую грязь. Значит, если взять частицы этого вещества с большой суммарной площадью поверхности, поместить в воду и облучить ультрафиолетом, произойдет очень эффективная очистка воды (при условии, конечно, что вы сможете потом эти частицы отфильтровать). А если нанести титановые белила на стену, то когда солнышко ее осветит, там тоже, возможно, будут убиты очень многие микроорганизмы – либо самим солнцем, либо TiO2, кто потом докажет? Вот пример того, что за модным лозунгом могут скрываться давно известные вещи – просто их раньше не связывали с нанотехом.
Экология и новые материалы: титановые белила и ультрагвоздиДавайте кратко перечислим, что еще не упомянули?
– Нанотех универсален, поэтому перечислять области его применения можно бесконечно. Например, мы не назвали экологию, а вокруг нее особенно много спекуляций. Об этом – врезка "Просто белила", где речь о замечательных свойствах титановых белил.
Давайте кратко перечислим, что еще не упомянули?
– Нанотех универсален, поэтому перечислять области его применения можно бесконечно. Например, мы не назвали экологию, а вокруг нее особенно много спекуляций. Об этом – врезка "Просто белила", где речь о замечательных свойствах титановых белил.
С другой стороны, бытовые титановые белила все-таки не из наночастиц состоят – а более эффективные нанопорошки с обеззараживающими свойствами сделать на порядки труднее и дороже, так как эти свойства зависят не только от состава, но и от формы частиц, их срастания с частицами другой фазовой модификации, состава поверхности и многого другого.
Ну а сам-то нанотех представляет угрозу для экологии?
– Опасности существуют, но опять-таки многие из них не новы. Всем известны классические болезни – силикоз, асбестоз, бериллоз, рак легких у углекопов, – которые вызываются мельчайшими (в том числе и нано-) частицами некоторых материалов. Можно вспомнить недавние скандалы с нанокосметикой – плохо, что никто толком не знает, что в нее «запихивают», так как это секрет фирмы. Наночастицы легко проникают в клетки, даже обычный оксид железа может, оказывается, быть вредным в виде наночастиц. С другой стороны, йоги ведь буквально едят железо, в огромных количествах, – и ничего.
Но они же не наночастицы едят?
– Конечно, крупная частица не проникнет внутрь клетки – растворится, переработается. А наночастицы могут вести себя по-другому. Поэтому взаимодействие наночастиц с живым организмом – очень важная область исследований, и сейчас этим многие занялись (в том числе и у нас в МГУ, на биофаке, физфаке, химфаке, факультете наук о материалах и других факультетах). С другой стороны, наночастицы обычно очень реакционноспособны – легко превращаются в другие частицы, растворяются, трансформируются. Можно с осторожностью предположить, что накопление нежелательных наночастиц в окружающей среде – не такая уж большая опасность. Но тут все нужно тщательно изучать. А для этого нужен трезвый подход к проблеме.
В США и Европе в обществе (в частности, у гринписовцев, антиглобалистов) существуют устойчивые антипатии к «нано», есть целые организации, которые борются с нано, и в то же время есть фанатики нано – целый спектр радикальных мнений. К сожалению, у нас пока все только кричат "ура!" при слове «нанотехнологии» и в то же время слепо (но молча) их боятся.
В заключение надо хотя бы упомянуть новые конструкционные материалы. Это огромное поле иследований. Простейший пример: любая металлическая отливка – поликристаллическая, то есть состоит из зерен. Если эти зерна измельчать – механически, термомеханически – то в принципе можно дойти до уровня, когда весь, предположим, гвоздь будет иметь ультра– (я даже не говорю нано-) дисперсную структуру. Такая структура обеспечит ему меньшую пластичность, но большую жесткость. Так можно получить серьезное – раза в два-три – но не заоблачное улучшение параметров материала. Однако стоимость его значительно возрастет.
О конструкционных материалах можно рассказывать долго – но лучше просто назвать еще несколько исследовательских направлений, связанных с нанотехом: наноионику (в частности, электродные материалы на неуглеродных нанотрубках), "умные материалы", меняющие форму в зависимости от того, чем их облучают, наноэлектромеханические системы, НЭМС – на таком моторчике ездил сделанный в Университете Райс (Rice University) наноавтомобиль с колесами из фуллеренов, и др.
Реалистичный футуризмВ каких же из перечисленных областей вы ожидаете самого заметного прогресса в ближайшие пять лет?
– Экология, медицина, энергетика, электроника – в этих четырех областях лежит ближайший потенциал применения нанотеха.
В связи с запросами экологии должны появиться новые фотокатализаторы, сорбенты, ультрадисперсные и нанодисперсные порошки – и те, которые дезинфицируют, и те, которые используются для получения продуктов тонкого органического синтеза. Главное направление прогресса здесь – всевозможные катализаторы.
В медицине самые важные применения нанотеха будут связаны с нанокапсулами. Уверен, что удастся существенно улучшить фармакологические формы лекарств и средства их доставки. Будут исследованы основные аспекты взаимодействия наночастиц с живым организмом, и на этой основе появятся принципиально новые лекарства. Но это потребует долгого изучения, так как область малоисследованная и очень рискованная.
В энергетике можно ждать успехов с топливными элементами; может быть, появятся гораздо более эффективные солнечные батареи. И конечно – наноэлектроника, здесь должен быть стремительный прогресс.
Думаю, что могут быть хорошие достижения в области композитов, конструкционных материалов. У Артура Кларка в одном из романов центральную роль играет лифт на сверхлегких, сверхпрочных тросах, идущий с поверхности Земли на высоту геостационарной орбиты (36 тысяч километров над экватором). Проект "космического лифта из нанотрубок" я считаю чистой фантастикой, но под этим лозунгом, возможно, будут делаться хорошие композиты – прочные, легкие. В частности, что-нибудь интересное обязательно сделают с нанотрубками. Их прочность определяется только прочностью связей углерод-углерод, нанотрубки примерно в двадцать раз прочнее стали и раз в десять легче. Но все равно космический лифт окажется слишком дорогим! Скорее, такие нити будут вводить в композиты, делать с их использованием бронежилеты, небьющиеся стекла, ракетки для тенниса и пр.
И наконец – но в более далекой, чем пять лет, перспективе – серьезный акцент будет сделан на том, что уже сейчас считается страшно важным в США, Европе, Японии: это всевозможные чувствительные элементы, сенсоры, "электронный нос" (сами-то сенсоры скорее всего будут не нано-, а микроразмеров). Впрочем, приницпиально новые устройства предсказывать не берусь.
Тогда же можно ожидать появления покрытий, делающих самолеты и корабли «невидимыми» в том или ином диапазоне излучений, хотя очень трудно сказать, какова будет в этом роль нанотеха. Более реалистичное дело – одежда с необычными и полезными свойствами. Совместите ткань с наночастицами, свойства которых вы сможете задать и контролировать, – и получите "умную одежду" (но, конечно, не плащ-невидимку или супербронежилет – нельзя нарушить законы природы и прыгнуть выше головы). Например, если такая одежда содержит серебро, то она будет заживлять раны. Можно сделать так, чтобы она была гидрофобной и самоочищалась. Это, конечно, практически важно, но не революционно.
Боюсь заглядывать далеко, потому что я по природе пессимист и осторожный человек и не хочу давать прогнозы, которые могут не сбыться.
В заключение повторю свой основной тезис. Нанотех не есть нечто принципиально новое. Это не революция, а усовершенствование. Нанотех – это попытка как можно глубже понять очень важный отрезок пространственной шкалы организации материи. На этом отрезке сочетаются те факторы, которые управляют важнейшими процессами преобразования самого вещества и энергии в веществе. По-настоящему интересно именно это, а не какие-то мифические нанороботы.
Фотографии, где не указан автор, предоставлены факультетом наук о материалах МГУ.
ПЕРЕПИСКА: Сдвинуть махину косности
Письмо наших читателей из МПГУ, послужившее началом приведенной ниже дискуссии, посвящено преподаванию химии в школе – достаточно частному вопросу, лежащему в стороне от основных интересов «Компьютерры». Однако, когда речь заходит об образовании – и среднем образовании в особенности – мы неизбежно сталкиваемся с целым рядом проблем, носящих фундаментальный характер: слово «химия» в этой переписке очень часто можно заменить на название любого другого школьного предмета – от математики до МХК. Об этих проблемах пишет Преподобный Михаил Ваннах, а Дмитрий Шабанов делится своими идеями о том, в каком направлении можно двигаться, чтобы исправить ситуацию. – И.Щ.
ПИСЬМО В РЕДАКЦИЮСразу отметим, что просим не подарков и денег, но помощи. Или, скорее, посредничества. Сказать, что «Компьютерра» совсем не уделяет внимания химии, – значит, соврать. Уделяет, но в соответствии со своим статусом-предназначением бизнес-планом. То бишь – достижениям и прогрессу. С другой стороны, в журнале регулярно появляются материалы об образовании – тоже в соответствии с профориентацией. Между тем, химия как учебный вообще и школьный предмет в частности, кажется, находится в кризисе (в загоне?) (какой предмет не находится?!)…
Это, как говорится, по нашему скромному мнению. Хотелось бы ошибиться, но – не получается! В средней школе от нее бегают, как от огня – предмет же ненужный, да и, пожалуй, трудный! Не можем говорить про МГУ, но в нашем вузе набор "на химиков" сократили на треть – третий год нет конкурса; только на бумаге! С учебными пособиями тоже занятно.