Первое чудо света. Как и для чего были построены египетские пирамиды - Анатолий Фоменко 11 стр.


«Обломок кладки „ноздреватой“ пирамиды. Образец представляет собой КОНГЛОМЕРАТ ИЗ СВЯЗУЮЩЕЙ МАССЫ С ВКЛЮЧЕНИЕМ ВОЛОКОН ПРЕДПОЛОЖИТЕЛЬНО РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ (см. рис. 160), угловатых породных ОБЛОМКОВ, остатков раковин… Рентгенографически в составе образца определяются: кальцит (основная фаза), незначительное количество кварца и глин. Кристаллическая часть образца составляет 70 процентов. Морфологическим анализом установлено, что образец сложен преимущественно кальцитом… Около 30 процентов пробы сложено кристаллами кальцита размером до 0,1 мм, часто частично или полностью микристаллизованными, видны только формы и реликты кристаллического строения. Среди кальцитовых обломков мелкие включения раковинного детрита и ФРАГМЕНТЫ ВОДОРОСЛЕЙ… Около 10 процентов пробы слагают ДЛИННЫЕ ВОЛОКНА, часто сильно ожелезненные, бурого цвета, реже бесцветные, — ВИДИМО, ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ.


Рис. 160. Фотография куска внутренней части блока «ноздреватой» пирамиды — самой западной спутницы пирамиды Менкаура в Гизе. Взято из первого отчета, сделанного в Институте бетона и железобетона имени А.А. Гвоздева по анализу образцов, привезенным нами из Египта до 2008 года, страница 4 отчета


Рис. 161. Фотография поверхности сделанного в лаборатории скола куска внутренней части блока «ноздреватой» пирамиды. На сколе виден комок гибких нитей размером около 6 мм, напоминающий ПАУТИНУ. Взято из первого отчета, сделанного в Институте бетона и железобетона имени А.А. Гвоздева по анализу образцов, привезенным нами из Египта до 2008 года, страница 5 отчета


На сколе образца, сделанном в лаборатории (т. е. ВНУТРИ образца), обнаружен МЯГКИЙ КОМОК размером около 6 мм, СОСТОЯЩИЙ ИЗ ГИБКИХ НИТЕЙ, по внешнему виду напоминающий КОМ ВЫСОХШЕЙ ПАУТИНЫ (рис. 161)» (первый отчет, с. 4–5).

Таким образом, было ТОЧНО ДОКАЗАНО, что блоки этой пирамиды-спутницы, стоящей рядом с пирамидой Менкаура в Гизе — БЕТОННЫЕ.


13. Железный кованый гвоздь в пирамиде Гизы

В ноябре 2005 года состоялась поездка в Египет, в которой приняли участие Г.В. Носовский, В.А. Рудников и еще несколько человек. Они посетили, в частности, Гизу — знаменитое поле пирамид около Каира. Именно здесь стоят три великие египетские пирамиды — Хеопса, Хефрена и Менкаура. Рядом расположено несколько небольших пирамид-спутниц. В частности, пирамида Менкаура имеет трех спутниц. Они стоят с южной стороны от нее, и вытянуты в цепочку по направлению восток-запад. В основном туристы посещают большие пирамиды Гизы. Пирамиды-спутницы привлекают куда меньше внимания, и вокруг них обычно не бывает скоплений посетителей. Однако для нас пирамиды-спутницы были не менее важны и интересны, поскольку предоставлялась возможность осмотреть грани пирамиды ПОЛНОСТЬЮ, сверху донизу, что в случае больших пирамид крайне осложнено или даже невозможно. И действительно, мы тщательно и в спокойной обстановке осмотрели некоторые из малых пирамид-спутниц в Гизе. При этом В. А. Рудниковым была сделана очень интересная находка.

Речь пойдет о средней из трех пирамид-спутниц рядом с пирамидой Менкаура. Она стоит бок о бок с той самой «ноздреватой» пирамидой, о которой мы говорили в предыдущем разделе, и которая оказалась сделанной из БЕТОНА. См. рис. 162, рис. 163.


Рис. 162. Три малых пирамиды-спутницы пирамиды Менкаура в Гизе. Правая пирамида-спутница — «ноздреватая» пирамида, средняя — та, в которой был найден железный гвоздь. Угол пирамиды Менкаура выглядывает в левой части снимка. Фотография 2008 года


Рис. 163. Пирамида Гизы, в которой в 2006 году нами был найден железный гвоздь. Место гвоздя отмечено стрелкой. Фотография сделана в 2002 году


9 ноября 2005 года, тщательно осматривая, ярус за ярусом эту среднюю пирамиду-спутницу, В.А. Рудников неожиданно обратил внимание на большой старинный кованый железный гвоздь, выступавший из горизонтальной щели между наружными блоками ее западной грани. Гвоздь был загнут на нижний блок и плотно прилегал к нему ребром шляпки, рис. 164. Попытки с усилием пошевелить гвоздь руками ни к чему не привели. Гвоздь мертво сидел на месте. Стало очевидно, что он не был просто всунут кем-то в щель между блоками пирамиды, а прочно и глубоко уходит жалом либо в слой связующего раствора между блоками пирамиды, либо в сам каменный блок.

Если бы гвоздь не был так сильно изогнут и торчал из щели прямо, то можно было бы предположить, что кто-то вбил гвоздь в камни древней пирамиды. Это, конечно, могло случиться и намного позже, чем пирамида была построена. Но такое предположение оказалось неверно. Дело в том, что гвоздь был загнут почти под прямым углом к линии щели, так, что его выступающая наружу часть очень плотно была прижата к поверхности блока пирамиды, рис. 164.


Рис. 164. Железный гвоздь, вмурованный между блоками средней пирамиды-спутницы пирамиды Менкаура в Гизе. Фотография сделана Г.В. Носовским в ноябре 2005 года


В таком искривленном состоянии вбить гвоздь было невозможно. Но может быть, гвоздь был сначала вбит, а потом загнут? И это исключено. Такой большой гвоздь при ударах молотка по нему, загибаясь, неизбежно расшатал бы свое гнездо в мягком камне. И не мог бы продолжать сидеть в нем так плотно, буквально намертво. Подчеркнем, что это был кованый, четырехгранный и очень толстый гвоздь. Длина гвоздя, как потом показали измерения, составляет 16 см. Диаметр его круглой шляпки — 2,1 см. Сторона квадратного сечения непосредственно около шляпки — 1 см. Площадь его поперечного сечения в том месте, где он был загнут, составляла, ни много ни мало, 0,64 кв. см. Сторона квадратного поперечного сечения в месте загиба равна 0,8 см. Загнуть такой железный прут о ребро блока пирамиды, не повредив мягкого камня, было невозможно. Все блоки этой пирамиды состоят из мягкой породы, легко поддающейся обычному перочинному ножу или даже ногтю. Однако никаких повреждений на блоке пирамиды в том месте, где находился гвоздь, не было.

Вооружившись куском гранита, которых там много набросано вокруг, Г.В. Носовский и В.А. Рудников стали ударами раскачивать гвоздь. После долгих усилий он начал потихоньку поворачиваться в своем гнезде. И, в конце концов, его удалось вытащить. Мы взяли его с собой. Оказалось, это действительно старинный кованый гвоздь, причем предназначенный, прежде всего для дерева, см. рис. 165–167. Такой гвоздь вообще нельзя вбить в камень. Дело в том, что кованые гвозди для дерева делались весьма толстыми возле шляпки, но с острого конца они были тонкими и длинными. Такие гвозди не годились для того, чтобы забивать их в камень или во что-либо твердое, тверже обычной древесины. Даже в дереве для них обычно предварительно сверлили дырку, чтобы не расщепить древесину толстым основанием гвоздя у его шляпки. Жало гвоздя, как правило, загибали с другой стороны. Поэтому жало делалось тонким и длинным. При попытке забить такой гвоздь в камень, его кончик сразу загнулся бы и ничего бы не получилось. Для камня и других твердых материалов использовались совсем другие гвозди, снабженные толстым жалом — костыли.


Рис. 165. Железный гвоздь, с трудом извлеченный из кладки древнеегипетской пирамиды


Рис. 166. Железный гвоздь, извлеченный из кладки древне-египетской пирамиды. Часть гвоздя, бывшая внутри кладки, не проржавела


Рис. 167. Железный гвоздь, найденный в кладке древне-египетской пирамиды


Стало понятно, что гвоздь, скорее всего, не был забит, а попал сюда еще тогда, когда пирамида строилась. То есть, он был попросту ВСТАВЛЕН в еще не застывший раствор.

Но ведь историки уверяют нас, что пирамиды Гизы возводились якобы в те далекие времена, когда люди еще не знали железа. По их мнению, строители «древне»-египетских сооружений работали только медными инструментами. Как видим, это НЕВЕРНО. У строителей египетских пирамид было и железо, и кузницы, и кованые железные гвозди. Кстати, в России подобные гвозди ковались в деревенских кузницах еще и в начале XX века. Поскольку такие гвозди использовались многократно, их и сегодня можно встретить в русских деревнях.

Оказывается, в средневековом каменном строительстве действительно использовались кованые гвозди. Они вставлялись в связующий раствор между кирпичами или камнями, вероятно, для лучшего удержания штукатурки. Причем часто они вставлялись в загнутом виде, точно так же, как и найденный нами железный гвоздь в «древнейшей» пирамиде. На рис. 168–170 мы приводим фотографии таких гвоздей, использованный в кладке старинной средневековой церкви святой Ирины в Стамбуле.

Рис. 168. Старинная средневековая кладка внутри церкви святой Ирины в Стамбуле. Ее стены были ободраны и во многих местах обнажились старинные кованые гвозди, вставленные в кладку, часто в загнутом виде. Стрелками отмечены места некоторых из этих гвоздей. Фотография 2010 года


Рис. 169. Старинный кованый гвоздь в кладке церкви святой Ирины в Стамбуле. Фотография 2010 года


Рис. 170. Еще один старинный кованый гвоздь в кладке церкви святой Ирины в Стамбуле. Фотография 2010 года


Получается, что строители якобы «древнейшей» пирамиды в Гизе пользовались гвоздями, просуществовавшими в нашем обиходе до начала XX века! Но тогда, сколько же лет пирамидам?

Надо сказать, что нам очень повезло. Никто из египтологов этот гвоздь до нас не заметил. Иначе они, конечно, тут же бы вытащили его и удовлетворенно сделали вид, что его там никогда не было.

Кстати, возникает вопрос к египтологам. Если древние строители пирамид пользовались исключительно медными инструментами, то почему в Гизе, например, до сих пор не найдено ни одного такого инструмента? Неужели никто из якобы сотен тысяч рабов, трудившихся на грандиозной древней стройке, так и не обронил своего медного долота? Не потерял его где-нибудь между блоками пирамиды? А ведь таких долот на стройке должно было быть несметное количество. Медь быстро стирается о камень, потому медные инструменты необходимо было часто менять или затачивать. Кстати, именно такая фантастическая картина и преподносится сегодня в различных научно-популярных фильмах о строительстве пирамид. Между строителями, дескать, постоянно ходили разносчики инструмента с большими корзинами. Они отбирали притупившиеся долота и выдавали взамен острые. Тупые же несли куда-то точить. Но тогда неподалеку от пирамид, в том месте, где инструмент точили, должны были скапливаться горы медной крошки и пыли. Почему бы историкам, столь уверенным в «медной» теории пирамидального строительства, не заняться поиском этого, столь удобренного медью, «точильного места» рядом с пирамидами? Вооружились бы современными приборами для поиска металлов и начали поиски. Ясно, что если бы египтологи были действительно правы, они легко бы обнаружили и следы сточенной с инструментов меди и множество утерянных древними рабочими медных инструментов. Но почему-то в пирамидах ничего подобного не находят.

А находят, как мы видели, ЖЕЛЕЗНЫЕ ИЗДЕЛИЯ. Даже мы, побывав в Египте всего несколько раз, смогли найти железный гвоздь в пирамиде.

Но все-таки, почему гвоздь в пирамиде не заметили раньше, до нас? Вероятно, причина в том, что цвет гвоздя, со временем порыжевшего снаружи от ржавчины, не сильно отличался от цвета камней пирамиды. Заметить гвоздь даже с расстояния метра было уже почти невозможно. В частности, его нельзя было увидеть с земли. Надо было обязательно забраться на средние ярусы пирамиды и внимательно, в упор, посмотреть на него. Или же — как это сделали мы, — тщательно осмотреть ВСЕ грани пирамиды и ВСЕ щели между ее блоками. Видимо, у египтологов так и не возникло желания проделать подобную кропотливую работу.

И еще одно замечание. Когда мы все-таки вытащили гвоздь, оказалось, что его острый конец совершенно не был покрыт налетом ржавчины, см. рис. 165–167. Причина, вероятно, в том, что острие гвоздя оказалось настолько прочно охвачено окружающим его массивом камня, что доступ воздуха к поверхности железа был полностью прекращен. Но такое было бы маловероятно, если бы гвоздь ЗАБИВАЛИ в камень. При забивании образовались бы мельчайшие щели в породе, достаточные для доступа воздуха к поверхности гвоздя — даже возле самого острия. Но если конец гвоздя и в самом деле попал в БЕТОННЫЙ РАСТВОР, КОТОРЫЙ ПОТОМ ЗАСТЫЛ, то все становится на свои места. Тогда, действительно, доступ воздуха к вмороженной в бетон части гвоздя мог быть полностью прекращен, и ржавчина возле острия не появилась бы. Что мы и видим на гвозде. Это — еще одно косвенное свидетельство того, что гвоздь не был вбит позже. Следовательно, строители пирамиды пользовались ЖЕЛЕЗНЫМИ орудиями труда.


14. Что такое знаменитый философский камень, который долго и безуспешно пытались открыть поздне-средневековые алхимики

Открытие И. Давидовича заставляет по-новому взглянуть средневековую алхимию и некоторые связанные с ней загадки.

Сегодня принято считать, что алхимия это «донаучное направление в развитии химии. ВОЗНИКНУВ В ЕГИПТЕ (3–4 вв. н. э.), алхимия получила особенно широкое распространение в Западной Европе (11–14 вв.). Главная цель алхимии — нахождение так называемого „ФИЛОСОФСКОГО КАМНЯ“… Положительная роль алхимии — в открытии или усовершенствовании (в процессе поиска чудодейственного средства) способов получения практически ценных продуктов (минеральные и растительные краски, стекла, эмали, металлические сплавы, кислоты, щелочи, соли), а также в разработке некоторых приемов лабораторной техники (перегонка, возгонка) и др.» [6], с. 38.

Изготовление философского камня считалось ВЕЛИКИМ ДЕЛОМ. Пишут так. «Гермес Трисмегист… — мифический основатель алхимии, отождествлявшийся с древнеегипетскими богами: Тотом (богом мудрости), Пта (покровителем искусств и ремесел) и др… Гермес объединил в своем лице религию, медицину и астрономию, ПРИМЕНЯЛ ТРИ ОСНОВНЫХ ВЕЩЕСТВА ДЛЯ „ВЕЛИКОГО ДЕЛА“ — ПОЛУЧЕНИЯ ФИЛОСОФСКОГО КАМНЯ» [10], с,26, комментарий 10.

Таким образом, главной целью алхимии — возникшей, кстати, в Египте, то есть именно там, где был изобретен геополимерный бетон, — было получение ФИЛОСОФСКОГО КАМНЯ. Или «научного камня», поскольку слово «философия» в Средние века означало науку вообще.

Сегодня историки думают, что философский камень средневековой алхимии — это камень, превращающий железо в золото. Такого камня, естественно, не существует. То есть, историки предлагают считать, что средневековые алхимики занимались, в общем-то, пустым делом, глупостями. Искали несуществующий философский камень. И лишь иногда, между делом, случайно открывали полезные вещи. «На Западе вера в философский камень побуждала к исследованиям, которые окутывались мистикой и описывались на аллегорическом языке… У некоторых убеждение в магической мощи философского камня было настолько твердым, что они составляли прописи, которые кажутся нам теперь наивными» [10], с. 45.

Но после открытия И. Давидовича мы начинаем совсем по-другому смотреть на древнюю алхимию. И начинаем понимать, что «научный» или «философский» камень — это не плод воображения средневековых невежд, а важнейшее открытие древности, геополимерный бетон. Это искусственный камень египетских пирамид, храмов и статуй. По-видимому, очень многие «загадочные» древние каменные сооружения неимоверных размеров — и не только в Египте — были изготовлены из философского камня, то есть геополимерного бетона.

Когда секрет чудесного камня оказался утерян, многие алхимики — в том числе и западно-европейские — старались вновь обрести его. Но это им не удалось. Отсюда, вероятно, и возникла легенда о бесконечных и безуспешных попытках средневековых алхимиков найти философский камень. В конце концов, опыты были прекращены, а сами слова «философский камень» обросли сказочным содержанием. Якобы это был чудодейственный камень, способный превратить железо в золото.

Более того, оказывается, в истории алхимии известно, что ФИЛОСОФСКИЙ КАМЕНЬ УЖЕ БЫЛ КОГДА-ТО ИЗВЕСТЕН В ЕГИПТЕ, НО ПОТОМ СЕКРЕТ ЕГО БЫЛ УТРАЧЕН [38], т. 2, с. 216.

Существует замечательная средневековая легенда о том, как некий египтянин Адфар, житель египетской Александрии, нашел книгу древнего мудреца Гермеса, из которой узнал, как изготовить философский камень. Адфар, как говорится в легенде, научил этому искусству молодого римлянина Мориенуса, рис. 171. Через какое-то время египетский царь Калид (вероятно, средневековый КАЛИФ XVI–XVII веков, то есть турецкий султан) потребовал от своих алхимиков изготовить философский камень. Но они не смогли этого сделать. Однако Мориенус приехал к Калиду и изготовил камень. После чего царь приказал отрубить остальным алхимикам головы. Но Мориенус исчез, не открыв секрета.


Рис. 171. Старинное изображение Мориенуса, вероятно условное. С гравюры де Вриеса. Взято из [20], с. 79


Однако, через некоторое время слуга царя Калида (калифа?) все-таки нашел Мориенуса и стал расспрашивать его, как изготовить камень. Мориенус ответил на заданные ему вопросы. По его словам, философский камень состоял из четырех составляющих. Для получения камня, сказал Мориенус, надо сперва РАЗРУШИТЬ [38], т. 2, с. 217. И действительно, бетон делается из РАЗРУШЕННОЙ, РАЗДРОБЛЕННОЙ ПОРОДЫ.

Назад Дальше