К тому же они знали, что античные атомисты жили в мире многобожия: в поэме Лукреция слово «бог» употребляется лишь во множественном числе. Античный атеизм отрицал именно многобожие, и можно понять почему: олимпийским богам нечего делать в мире атомов, закономерно движущихся в пустоте. Само понятие закономерности несовместимо с прихотями олимпийцев. Аполлон велит атому лететь направо, Артемида — налево, так кого слушать? Библейское же представление о едином Боге-законодателе в античный мир еще не проникло.
Атомная гипотеза привлекала и Галилея и Ньютона, хоть и не привела их к осязаемым достижениям. Но к середине двадцатого века достижений было уже столько, что физик Ричард Фейнман подытожил:
Если бы некий катаклизм уничтожил все научные знания и к грядущим поколениям дошло бы только одно утверждение, то какое, составленное из наименьшего количества слов, содержало бы наибольшую информацию? Думаю, атомная гипотеза: все вещи состоят из атомов — маленьких частиц, которые беспрерывно движутся, притягивая друг друга на некоем расстоянии и отталкивая при большом сжатии. В одной этой фразе огромное количество информации о мире, стоит лишь приложить немного воображения и подумать.
Первые физические доводы в пользу атомов появились в семнадцатом веке, когда возникла идея о том, что давление газа на стенку сосуда — это результат ударов атомов, составляющих газ и движущихся беспорядочно во всех направлениях. Такое движение атомов рождает также ощущение тепла: чем быстрее атомы движутся, тем горячее. Из этой идеи, однако, не удалось извлечь измеримых следствий, и верх взяла идея попроще: тепло — это невидимая жидкость, перетекающая от горячего тела к холодному при их контакте.
На помощь атомной физике пришли химики, которые в начале девятнадцатого века заметили, что вещества вступают в химические реакции в целочисленных пропорциях типа 1:1, 1:2, 1:3, 2:3 и тому подобные. Это дало основание предположить, что суть химических реакций — соединение атомов, которые почему-то соединяются лишь с определенным числом других атомов. Такие соединения атомов — минимальные количества химических веществ — назвали молекулами. В простейшем случае молекулой может быть и один атом. Но это все пока — молекулярная химия.
А молекулярная физика создавалась на глазах Максвелла и при активном его участии. В картине атомно-молекулярного движения особенно озадачивала беспорядочность. Ведь наука занимается как раз упорядоченностью мироустройства?! Максвелл сумел обнаружить упорядоченность в беспорядке, когда он максимален, и нашел подходящий математический язык, чтобы описать эту упорядоченность, — теорию вероятностей, или, как говорили раньше, исчисление вероятностей. До Максвелла это исчисление применяли лишь к азартным играм и к скучной статистике. Хотя понятие вероятности, быть может, самое нужное в жизни, которая, как известно, — игра.
В любой порядочной игре не известен следующий ход соперника или судьбы. Но если, как советовал Фейнман, «приложить немного воображения и подумать», то в некоторых случаях можно оценить вероятности разных событий. К примеру, если в коробку с черными шарами в количестве Ч бросить Б белых шаров и хорошо перемешать, то вероятность вытащить из коробки наугад белый шар равна Б/(Ч+Б).
Если же вместо коробки с шарами взять емкость с газом, то движущиеся молекулы сами себя перемешивают, и поэтому можно спросить, какова вероятность того, что наугад выбранная молекула имеет такую-то скорость. Ответ Максвелла, или максвелловское распределение молекул газа по скоростям, — это первый физический закон, основанный на понятии вероятности.
Можно сомневаться, назвать ли этот результат новым законом природы, если Максвелл его получил, опираясь на законы механики Ньютона, «просто» применив их к молекулам. Однако то было совершенно новое применение и совершенно новый тип закона. Прежде законы механики определяли движение объекта, исходя из знания его начального положения, то есть описывали историю этого объекта. При огромном числе молекул газа такой — исторический — подход теряет смысл. И возникает новый — статистический, определяющий свойства данного газа: его давление на стенки сосуда, вязкость (или внутреннее трение), скорости распространения в этом газе тепла, запаха и так далее.
Некоторые из газовых законов были открыты экспериментально еще во времена Ньютона, начиная с закона Бойля (и Мариотта), согласно которому давление газа обратно пропорционально его объему. Молекулярная гипотеза позволила объяснить все эти законы и связать внешне столь разные явления, как диффузия, теплопроводность и вязкость.
Особенно драматичным стало объяснение вязкости. Из теории следовало, что вязкость газа не зависит от его плотности, что казалось странным, если не сказать абсурдным. Максвелл взялся за измерения, готовый опровергнуть собственный теоретический вывод. Он построил экспериментальную установку и обнаружил, что вязкость воздуха действительно постоянна в диапазоне 60-кратных плотностей. Это был триумф атомной гипотезы и, заодно, Максвелла.
Измерение наблюдаемых свойств газов позволило вычислить характеристики молекул — размеры, скорости и массы НЕНАБЛЮДАЕМЫХ, невообразимо малых молекул. Представить себе размер атома можно, мысленно увеличив яблоко до размера Земли, — тогда атомы яблока станут размером с яблоко, то есть яблоко так относится к Земле, как атом к яблоку.
Во времена Максвелла физики понятия не имели, что собой представляет атом и как именно атомы соединяются в молекулы. Незнание это, однако, не помешало понять молекулярную физику газов, поскольку основная жизнь молекулы газа проходит в свободном полете, и лишь малая ее часть тратится на столкновения. Поэтому свойства газа и определяются самыми простыми свойствами его молекул — массой и размером. Другое дело — жидкость и твердое тело, где молекулы расположены вплотную друг к другу.
К счастью физиков, они могли исследовать газы — не столь простые объекты, как маятники Галилея, но за два с лишним века экспериментаторы научились делать гораздо более тонкие и точные опыты. Искусство физика состоит в том, чтобы найти простой объект для изучения новых явлений, придумать простые опыты и… открыть законы этих явлений.
Главная награда за хорошо придуманные, сделанные и обдуманные опыты — открытие новой упорядоченности мироздания и расширение горизонта познания. Об этом в лекции «Теория молекул» Максвелл рассказал в 1874 году на собрании Британского общества содействия развитию науки.
Вглубь микромира и во всю ширь Вселенной
В лекции Максвелл рассказал о развитии идеи, начиная с античной гипотезы о неделимых атомах. Гипотеза эта противоречила житейскому опыту: любую, сколь угодно малую, каплю воды можно разделить на две. Видные философы, включая Аристотеля, атомизм отвергали. Однако философия и житейский опыт не сумели убить эту идею.
Два тысячелетия спустя появились реальные основания сравнить всякое вещество не с водой, а с песком, который, при взгляде издалека, кажется сплошным. Кучку песка можно делить и делить пополам, пока не возникнет сомнение, является ли результат деления все еще кучкой или уже штучками — песчинками. Физики, не пытаясь взять в руки отдельную штучную молекулу, старались из молекулярной гипотезы получить экспериментально наблюдаемые — измеримые — следствия.
О стараниях этих Максвелл рассказал в своей лекции и с помощью бутылки с аммиаком продемонстрировал несколько молекулярных явлений, начиная с того, что открыл бутылку и дал аудитории понюхать. Первый ряд ощутил запах очень скоро, а до последнего ряда запах дошел лишь через некоторое время. Расстояние, деленное на время, дало скорость диффузии аммиака в воздухе. И вот эту скорость физикам надо было получить из свойств молекул или, наоборот, исходя из измеренной скорости диффузии определить основные параметры молекул. Максвелл упомянул около двадцати физиков из разных стран, усилиями которых создавалась новая область науки. Она нацеливалась на явления самые обычные и наглядные, но — до появления молекулярной физики — непонятные: испарение и кипение, распространение тепла и запаха, трение и скольжение… Еще до Максвелла физики сделали несколько остроумных оценок и прикидок, но именно он заложил основу общей теории — статистической физики, которую, как он подчеркнул, значительно развил Людвиг Больцман.
Подытоживая полученные результаты, Максвелл разделил их по степени обоснованности на три класса. Самыми надежными назвал массы молекул, выраженные в массах легчайшей молекулы водорода, и средние скорости движения молекул. Менее надежны были относительные размеры молекул газов и среднее расстояние свободного пробега — среднее расстояние, проходимое между столкновениями. А наиболее предположительны — абсолютные размеры и массы молекул. Вот какую таблицу новых молекулярных данных Максвелл показал аудитории.
Можно представить себе, какое впечатление на публику произвели первые новости из физики микроскопических объектов. Точнее сказать, «наноскопических», поскольку ни в какой микроскоп не увидишь атомный размер — нанодюйм. Сто миллионов атомов в ряд образуют цепочку длиной в один сантиметр, а один грамм — это миллион-миллиардов-миллиардов атомов. Верить в реальность атомных величин помогало то, что рассчитанные на их основе теоретические свойства газов хорошо соответствовали — с точностью до процентов — измеренным. Соответствующую таблицу Максвелл также привел в своей лекции, показав, что физики, даже витая в теоретических облаках, твердо стоят на земле и что открылся реальный путь к исследованию мельчайших деталей мироздания.
Относительные массы молекул водорода, кислорода, окиси и двуокиси углерода — 1:16:14:22 — своими целыми числами намекали на какую-то новую упорядоченность, на некую структуру самих атомов и на общность этой структуры, однако для теории в этом направлении других оснований пока не было. Но Максвелл не поставил точку на достигнутом. Он был уверен, что атомы имеют структуру, исследовать которую лишь предстоит:
Атом — не жесткий объект. Он способен к внутренним движениям, а когда эти движения возбуждены, испускает излучение с длинами волн, соответствующими периодам его колебаний. При помощи спектроскопа длину волны света можно определить с точностью до сотой доли процента. Так убедились, что не только атомы любого образца водорода в наших лабораториях имеют один и тот же набор периодов колебаний, но что свет с тем же самым набором испускается Солнцем и звездами.
Стало быть, исследование самых малых физических объектов открыло возможность для исследования объектов самых больших и самых далеких. Путь к этому начал еще Ньютон. Пропустив солнечный свет через стеклянную призму, он получил спектр — полоску всех цветов радуги, а затем, пропустив эту радугу через перевернутую призму, вновь получил ясный солнечный свет. Это открытие, видимо, произвело сильнейшее впечатление на автора надгробной надписи в Вестминстерском аббатстве, раз он добавил «о чем ранее никто не подозревал».
Никто также не подозревал, что в ярком солнечном спектре имеются темные линии, пока их не разглядел в 1814 году германский физик Фраунгофер. Он разглядел и обозначил около шестисот линий, совершенно не понимая, что они такое.
Понимание пришло сорок лет спустя при исследовании цвета пламени, в которое помещали различные вещества. Исследовали с помощью спектроскопа, основа которого — стеклянная призма. Оказалось, что каждое вещество дает свой особый спектр — набор линий разной яркости. Каждая линия соответствует свету определенной длины волны. Собрав спектральные «отпечатки пальцев» разных веществ, исследователи получили новый и точный способ определять вещество по его спектру. И тогда заново вгляделись в линии Фраунгофера. То, что те линии — темные, а в спектрах пламени — яркие, объяснили тем, что первые — спектр поглощения света, а вторые — спектр испускания. Жаркий свет Солнца, проходя через вещество его прохладной атмосферы, поглощается особенно охотно на тех длинах волн, на которых это вещество излучало бы, если его как следует разогреть.
Таким образом установили, что атмосфера Солнца содержит водород, кислород, натрий, железо и другие хорошо известные земные элементы.
Почти таким же образом обнаружили на Солнце новое вещество. Обнаружили в протуберанцах, извергаемых из солнечных недр за границы солнечной атмосферы. Наблюдать спектр раскаленного протуберанца — спектр испускания — легче всего во время полного солнечного затмения, когда Луна, закрывая Солнце, оставляет открытыми лишь самые выдающиеся протуберанцы. Так в 1868 году обнаружили линию, какой не было ни в одном из собранных спектров, и предположили, что линия эта принадлежит веществу, на Земле пока не открытому. Неизвестное вещество назвали гелием — от греческого слова «солнце», и стали его искать на Земле. Нашли лишь через 27 лет.
Что было в самом начале?
В конце своей лекции 1874 года Максвелл обратил внимание на новое свойство природы, собственно и сделавшее возможными достижения молекулярной физики и астрофизики:
Молекулярная физика учит, что опыты никогда не могут дать чего-либо большего, чем статистическое знание, и что ни один закон, выведенный этим путем, не может претендовать на абсолютную точность. Но когда в размышлениях мы переходим от наших опытов к самим молекулам, мы покидаем мир случайности и переменчивости и вступаем в область, где все определенно и неизменно. Молекулы соответствуют своему прототипу с точностью, какую не найти в наблюдаемых свойствах тел, ими образуемых. Во-первых, масса каждой отдельной молекулы и все другие ее свойства абсолютно неизменяемы. Во-вторых, свойства всех молекул одного типа абсолютно тождественны.
Откуда бы ни добыть кислород и водород — из воздуха, из минералов разных геологических эпох или из метеоритов, — один литр кислорода соединится ровно с двумя литрами водорода, образовав ровно два литра водяного пара. Атомы водорода на Земле, на Сириусе или на Солнце абсолютно одинаковы. Этот фундаментальный научный факт подвел мысль Максвелла к краю науки:
Никакая теория эволюции не может объяснить такое сходство атомов, ибо эволюция подразумевает постоянные изменения, а атом не способен ни расти, ни распадаться, ни рождаться, ни уничтожаться. Следовательно, мы не можем приписать существование атомов и тождество их свойств какой-либо причине, которые мы называем естественными. С другой стороны, полное тождество каждого атома с любым атомом того же рода дает им, как метко выразился сэр Джон Гершель [выдающийся астроном и физик], характерный признак изделий, изготовленных по образцу, и исключает идею их вечного существования самих по себе.
Так мы подошли, строго научным путем, очень близко к тому месту, где Наука должна остановиться. Не потому, что Науке запрещено изучать внутренний механизм атома, который она не может разобрать на части, или исследовать устройство, которое она не может собрать. Прослеживая историю вещества, Наука останавливается, убедившись в том, что, с одной стороны, атомы были сделаны, а с другой, что они не были сделаны в каком-либо процессе, какие мы называем естественными.
Наука останавливается, но Максвелл не остановился и завершил лекцию так:
С тех пор, как атомы были сотворены, они сохраняют свое совершенство в числе, мере и весе. Неизменность их характеристик говорит нам, что стремления к точности в измерениях, к правдивости в суждениях и к справедливости в действиях мы относим к благороднейшим качествам потому, что они — существенные составляющие образа Того, кто вначале сотворил не только небо и землю, но и материалы, из которых они состоят.
Начало фразы — неявная цитата из Ньютона, который, в свою очередь, вольно процитировал библейскую Книгу Премудрости Соломона: «Ты, Господь, все расположил мерою, числом и весом». Ньютон в своей студенческой записной книжке перефразировал: «Бог все сотворил числом, весом и мерою». Библию Максвелл знал слишком хорошо, чтобы допустить случайную фразу в этом единственном проявлении его религиозного мировосприятия в его собственных публикациях.
Не пожалел ли он о своей откровенности, получив после лекции приглашение вступить в общество, защищающее «великие истины Библии против того, что ложно называют возражениями науки»? Приглашение он отклонил и, судя по черновику его ответа, отклонил потому, что в благом намерении увидел ограничение свободы научных исследований:
Я думаю, что результаты, к которым приходит каждый человек в своих попытках гармонизировать свою науку со своим Христианством, имеют значение лишь для самого этого человека и не должны получать от общества оценочный штамп. Потому что суть науки, особенно ее ветвей, простирающихся в области неведомого, состоит в том, чтобы постоянно —
На этом черновик обрывается, но можно думать, что Максвелл далее написал нечто вроде: «…чтобы постоянно задавать новые вопросы и сомневаться в привычных ответах».
Одна из задач науки — выяснение границ применимости ее теорий. Подобную границу Максвелл выявил, когда понял, что в молекулярной физике напрямую не работает Ньютонова механика, нацеленная на движение отдельного тела. На смену пришла статистическая механика, имеющая дело с огромным числом движущихся частиц. Так что, и выявляя границу применимости самой науки — в вопросе происхождения элементарных частиц вещества, Максвелл занимался своим делом.
Сам вопрос могла ему подсказать эволюционная теория Дарвина, тогда уже 15 лет горячо обсуждаемая. Теория эта объяснила массу биологических фактов, но один вопрос остался без ответа. «Никчемное дело — рассуждать сейчас о происхождении жизни; с тем же успехом можно рассуждать о происхождении материи», — писал Дарвин в 1871 году.