Теория статистики: конспект лекций - Инесса Бурханова 6 стр.


Ряд функций, которые выполняют статистические показатели, – это прежде всего познавательная, управленческая (контрольно–организаторская) и стимулирующая функции.

Статистические показатели в познавательной функции характеризуют состояние и развитие исследуемых явлений, направление и интенсивность развития процессов, происходящих в обществе

Обобщающие показатели – это база анализа и прогнозирования социально–экономического развития отдельных районов, областей. регионов и страны в целом. Количественная сторона явлений помогает проанализировать качественную сторону объекта и проникает в его сущность.

Управленческая функция является одним из самых важнейших элементов процесса управления на всех его уровнях.

Показатели, применяемые для изучения статистической практики и науки, подразделяют на группы по следующим признакам:

1) по сущности изучаемых явлений – это объемные, характеризующие размеры процессов, и качественные, которые выражают количественные соотношения, типичные свойства изучаемых совокупностей;

2) по степени агрегирования явлений – это индивидуальные, которые характеризуют единичные процессы, и обобщающие, отображающие совокупность в целом или ее части;

3) в зависимости от характера изучаемых явлений – интервальные и моментные. Данные, отображающие развитие явлений за определенные периоды времени, называют интервальными показателями, т. е. это статистический показатель, который характеризуют процесс изменения признаков. К моментным показателям относят показатели, которые отражают состояние явления на определенную дату (момент);

4) в зависимости от пространственной определенности различают показатели: федеральные – характеризуют изучаемый объект в целом по стране; региональные и местные – эти показатели относятся к определенной части территории или отдельному объекту;

5) в зависимости от свойств конкретных объектов и формы выражений статистические показатели делятся на относительные, абсолютные и средние, данные показатели будут рассмотрены ниже.

Для правильности отражения в статистических показателях изучаемых явлений или протекающих процессов необходимо выполнять следующие требования:

1) при построении статистических показателей необходимо опираться на положения экономической теории, статистическую методологию и опыт статистических работ управления торговлей; стремиться к тому, чтобы показатели выражали сущность изучаемых явлений и давали им точную количественную оценку;

2) необходимо получать полную статистическую информацию как по охвату единиц изучаемого объекта, так и по комплексному отображению всех сторон протекаемого статистического процесса;

3) обеспечивать сравнимость статистических показателей посредством единообразия исходных данных в пространственном и временном отношениях, а также применяя одинаковые единицы измерения;

4) степень точности получаемой информации, на основе которой будут исчисляться показатели, должна быть повышенной. Статистические показатели взаимозависимы, поэтому они рассматриваются в определенной связи, поскольку по одному показателю, характеризующему одну или несколько сторон статистического явления, нельзя составить полное представление об изучаемом процессе.

Для разработки системы показателей нужно глубоко изучить сущность анализируемого объекта и точно сформулировать целевую установку процесса исследования с выделением главного звена во всей изучаемой совокупности статистических показателей.

Систему статистических показателей образует совокупность взаимосвязанных показателей, которые имеют одноуровневую или многоуровневую структуру. Система статистических показателей нацелена на решение конкретной задачи.

Системы статистических показателей имеют разный масштаб Например, они характеризуют деятельность магазина, ассоциации, торговли района, области и т. д. Выделяются подсистемы показателей, с их помощью изучают определенные сферы деятельности предприятий отрасли, например, подсистема показателей по труду, материальным ресурсам, финансовым средствам и др.

2. Абсолютные величины, их основные виды

Статистические данные, полученные при наблюдении, в результате сводки, группировки, почти всегда являются абсолютными величинами, т. е. величинами, которые выражены в натуральных единицах и получены в результате счета или непосредственного измерения. Абсолютные величины отражают численность единиц изучаемых совокупностей, размеры или уровни признаков зарегистрированных у отдельных единиц совокупности, и общий объем количественно выраженного признака как результат суммирования всех его отдельных значений.

Абсолютные величины имеют большое познавательное значение.

Абсолютные величины выражают размеры (уровни, объемы) социально–экономических явлений и процессов, их получают в результате статистического наблюдения и сводки исходной информации. Абсолютные величины используют в практике торговли, применяют в анализе и прогнозировании коммерческой деятельности. На основе этих величин в коммерческой деятельности составляют хозяйственные договоры, оценивают объем спроса на конкретные изделия и т. д. Абсолютными величинами измеряются все стороны общественной жизни.

Абсолютные величины по способу выражения размеров изучаемых процессов подразделяются на: индивидуальные и суммарные, они в свою очередь относятся к одному из видов обобщающих величин. Размеры количественных признаков у каждой статистической единицы характеризуют индивидуальные абсолютные величины, а также они являются базой при статистической сводке для соединения отдельных единиц статистического объекта в группы. На их основе получают абсолютные величины, в которых можно выделить показатели объема признаков совокупности и показатели численности совокупности. Если заняться исследованием развития торговли и ее состояния в определенном районе, то определенное количество фирм можно отнести к индивидуальным величинам, а объем товарооборота и число работников, работающих в фирме, относят к суммарным.

Абсолютные величины бывают экономически простыми (численность магазинов, работников) и экономически сложными (объем товарооборота, размер основных фондов).

Абсолютные величины – всегда числа именованные, имеют определенную размерность, единицы измерения. В статистической науке применяются натуральные, денежные (стоимостные) и трудовые единицы измерения.

Единицы измерения называют натуральными, если они будут соответствовать потребительским или природным свойствам предмета, товара и будут выражены в физических весах, мерах длины и т. п. В статистической практике натуральные единицы измерения могут быть составными. Применяют условно–натуральные единицы измерения при суммировании количества разнородных товаров, продуктов.

Трудовые единицы измерения (человеко–дни, человеко–часы) используются для определения затрат труда на производства продукции, выполнение работы и т.д.

Абсолютные величины измеряются в стоимостных единицах – ценах. В стоимостных единицах измеряют доходы населения, валовой выпуск продукции и др.

3. Относительные величины, их значение и основные виды

Одних абсолютных статистических величин недостаточно для характеристики изучаемых объектов. Чтобы отразить состояние рост, развитие явлений, соотношение их во времени и пространстве в статистике широко пользуются относительными величинами.

Показатели, полученные в результате сравнения абсолютных величин, в статистике называют относительными величинами.

Относительные величины дают представление, во сколько раз одна абсолютная величина больше другой или какую часть одна абсолютная величина составляет от другой, или сколько единиц одной совокупности приходится на единицу другой.

Относительные величины – это показатель, который представляет собой частное от деления двух статистических величин и характеризует количественное соотношение между ними.

Для расчета относительных величин в числитель ставится сравниваемый показатель, который будет отражать изучаемое явление а в знаменателе отражается показатель, с которым и будет производиться это сравнение, он является основанием или базой для сравнения. База сравнения – это своеобразный измеритель. Основание имеет результат отношения в зависимости от количественного (числового) значения, который выражается в: коэффициенте, процентах, промилле или децимилле.

Если база сравнения принимается за единицу, то относительная величина является коэффициентом и показывает, во сколько раз изучаемая величина больше основания. Если базу сравнения принять за 100%, то результат вычисления относительной величины будет выражен в процентах.

Если базу сравнения принимают за 1000, то результат сравнения выражается в промилле (%0). Относительные величины могут быть выражены и децимилле, если основание отношения равно 10 000.

Форма выражения зависит от: количественного соотношения сравниваемых величин; смыслового содержания полученного результата сравнения. Если сравниваемый показатель больше основания, тогда относительная величина выражается в коэффициенте или в проценте, но если сравниваемый показатель меньше основания, тогда относительную величину лучше выразить только в проценте.

Если показатели, которые сравниваются, являются сопоставимыми, то расчет относительных величин может быть правильным.

В зависимости от цели статистического исследования относительные величины подразделяются на следующие виды: выполнение договорных обязательств; относительные величины, характеризующие структуру совокупности; относительные величины динамики; сравнения; координации; относительные величины интенсивности.

Относительная величина выполнения договорных обязательств – это показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах.

Расчет показателя производится путем соотношения объема фактически выполненных обязательств и объема обязательств, предусмотренных в договоре. Выражается он в форме коэффициентов или в процентах.

Относительные показатели планового задания (ОППЗ) используются для перспективного планирования деятельности субъекта финансово–хозяйственной сферы и т.д.

ОППЗ рассчитывается следующей формулой:


Относительные величины структуры – это показатели, характеризующие долю от состава изучаемых совокупностей. Относительная величина структуры определяется отношением абсолютной величины отдельного элемента статистической совокупности к абсолютной величине всей совокупности, т. е. как отношение части к общему (целому), и характеризует удельный вес части в целом, в форме процента.

В анализе коммерческой деятельности торговли и сферы услуг относительные величины дают возможность изучить весь состав товарооборота по его ассортименту, состав работников фирмы – по определенным признакам (стажу работы, полу, возрасту), состав расходов предприятия и другие факторы, влияющие на коммерческую деятельность предприятия.

Относительные показатели структуры (ОПС) = уровень части совокупности / суммарный уровень совокупности в целом

Относительные величины динамики характеризуют изменение изучаемого явления во времени, выявляют направление развития, измеряют интенсивность развития. Рассчитывается относительная величина динамики как отношение уровня признака в определенный период или момент времени к уровню того же признака в предшествующий период или момент времени, т. е характеризует изменение уровня определенного явления во времени. Относительные величины динамики называются темпами роста:


Относительные величины сравнения характеризуют количественное соотношение одноименных показателей, относящихся к различным объектам статистического наблюдения.

Для сопоставления уровня цен на один и тот же товар, реализуемый через государственные магазины и на рынке, используются относительные величины сравнения. За базу сравнения принимается государственная цена. Относительные величины координации – это разновидность показателей сравнения. Они применяются для характеристики соотношения между отдельными частями статистической совокупности. Относительные величины координации характеризуют структуру изучаемой совокупности. Относительные величины интенсивности демонстрируют, насколько широко распространено исследуемое явление в определенной среде характеризуются соотношением разноименных и взаимосвязанных между собой абсолютных величин.

Именованные величины выражаются в относительных величинах интенсивности:

Относительная величина интенсивности = абсолютная величина изучаемого явления / абсолютная величина, характеризующая объем среды, в которой распространяется явление

Относительная величина демонстрирует, сколько единиц одной статистической совокупности приходится на единицу другой статистической совокупности.

Условием правильного использования обобщающих показателей является изучение абсолютных и относительных величин в их единстве. Комплексное использование абсолютных и относительных величин дает всестороннюю характеристику изучаемого явления.

Относительные показатели координации (ОПК) – это соотношение одной части совокупности к другой части этой же совокупности:

ОПК = уровень, характеризующий i – ую часть совокупности / уровень, характеризующий часть совокупности, выбранную в качестве базы сравнения

ЛЕКЦИЯ № 7. Средние величины

1. Общая характеристика

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623—1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648—1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796—1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX—XX вв.

Известный русский статистик Ю. Э. Янсон (1835—1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837—1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу

Назад Дальше