Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 11 стр.


Теперь мы рассмотрим комбинированный счет в 100 единиц. Вместо того чтобы ставить 1 доллар на каждые 4 доллара на комбинированном счете для каждой сис­темы, мы будем ставить 1 доллар на каждые 8 долларов комбинированного счета. Каждая сделка для любой системы затрагивает комбинированный счет, и именно комбинированный счет используется для определения размера ставки для после­дующей игры (Таблица II).

Отметьте, что в случае комбинированного счета и в случае отдельных счетов при­быль одна и та же: $42,38. Мы рассматривали положительную корреляцию между дву­мя системами. Теперь рассмотрим случай с отрицательной корреляцией между теми же системами, для двух отдельных денежных счетов (Таблица III):


Таблица II Система А Сделка P&L Система Б Сделка P&L Комбинированный счет 100,00 2 25,00 2 25,00 150,00 -1 -18,75 -1 -18,75 112,50 2 28,13 2 28,13 168,75 -1 -21,09 -1 -21,09 126,56 2 31,64 2 31,64 189,84 -1 -23,73 -1 -23,73 142,38 -100.00 Итоговая чистая прибыль по комбинированному счету= $42,38

Таблица Ш Сделка Система А P&L Полный капитал Сделка Система Б P&L Полный капитал 50,00 50,00 2 25,00 75,00 -1 -12,50 37,50 -1 -18,75 56,25 2 18,75 56,25 2 28,13 84,38 -1 -14,06 42,19 -1 -21,09 63,28 2 21,09 63,28 2 31,64 94,92 -1 -15,82 47,46 -1 -23,73 71,19 2 23,73 71,19 -50.00 -50.00 Чистая прибыль 21,19140 21,19140 Итоговая чистая прибыль по двум счетам = $42,38

Как видите, при работе с отдельными денежными счетами обе системы выигры­вают ту же сумму независимо от корреляции. Однако при комбинированном счете:

Таблица IV Система А Сделка P&L Система Б Сделка P&L Комбинированный счет 100,00 2 25,00 -1 -12,50 112,50 -1 -14,06 2 28,12 126,56 2 31,64 -1 -15,82 142,38 -1 -17,80 2 35,59 160,18 2 40,05 -1 -20,02 180,20 -1 -22,53 2 45,00 202,73 -100.00 Итоговая чистая прибыль по комбинированному счету= $102,73

При использовании комбинированного счета результаты гораздо лучше. Та­ким образом, торговать фиксированной долей следует на основе одного комбиниро­ванного счета.

Рассматривайте каждую игру как бесконечно повторяющуюся

Следующая аксиома, касающаяся торговли фиксированной долей, относится к максимизации текущего события, как будто оно должно быть осуществлено бес­конечное количество раз в будущем. Мы определили, что для процесса независи­мых испытаний вы должны всегда использовать оптимальное и постоянное f, но при наличии зависимости оптимальное f уже не будет постоянной величиной.

Допустим, в нашей системе существует зависимость, в соответствии с которой подобное порождает подобное, а доверительная граница достаточно высока. Для на­глядности мы будем использовать уже знакомую нам игру 2:1. Система показывает, что если последняя игра выигрышная, то следующая игра имеет 55% шанс выигры­ша. Если последняя игра проигрышная, то следующая игра имеет 45% шанс проиг­рыша. Таким образом, если последняя игра была выигрышная, то исходя из формулы Келли, уравнение (1.10) для поиска оптимального f (так как результаты игры имеют бернуллиево распределение), получим:

(1.10) f =((2+1)* 0,55-1)/2 =(3*0,55- 1)/2=0,65/2=0,325

После проигрышной игры наше оптимальное f равно:

f =((2+1)* 0,45-1)/2 =(3*0,45-1) /2 =0,35/2 =0,175

Разделив наибольший проигрыш системы (т.е. -1) на отрицательные оптималь­ные f, мы получим 1 ставку на каждые 3,076923077 единицы на счете после выиг­рыша и 1 ставку на каждые 5,714285714 единицы на счете после проигрыша. Та­ким образом мы максимизируем рост в долгосрочной перспективе.

Отметьте, что в этом примере ставки как после выигрышей, так и после проигрышей все еще имеют положительное математическое ожидание. Что произойдет, если после проигрыша вероятность выигрыша будет равна 0,3? В таком случае математическое ожидание имеет отрицательное значение и оп­тимального f не существует, таким образом, вам не следует использовать эту игру:

(1.03) М0=(0,3*2)+(0,7*-1) =0,6-0,7 =-0,1

В этом случае следует использовать оптимальное количество только после выиг­рыша и не торговать после проигрыша. Если зависимость действительно суще­ствует, вы должны изолировать сделки рыночной системы, основанные на зави­симости, и обращаться с изолированными сделками как с отдельными рыноч­ными системами. Принцип, состоящий в том, что асимптотический рост максимизируется, когда каждая игра осуществляется бесконечное количество раз в будущем, также применим к нескольким одновременным играм (или торговле портфелем).

Рассмотрим две системы ставок, А и Б. Обе имеют отношение выигрыша к проигрышу 2:1, и обе выигрывают 50% времени. Допустим, что коэффициент корреляции между двумя системами равен 0. Оптимальные f для обеих систем (при раздельной, а не одновременной торговле) составляют 0,25 (т.е. одна ставка на каждые 4 единицы на балансе). Оптимальные f при одновременной торговле в обеих системах составляют 0,23 (т.е. 1 ставка на каждые 4,347826087 единицы на балансе счета). В случае, когда система Б торгует только две трети времени, неко­торые трейдеры разорятся, если обе системы не будут торговать одновременно. Первая последовательность показана при начальном комбинированном счете в 1000 единиц, и для каждой системы оптимальное f соответствует 1 ставке на каж­дые 4,347826087 единицы:


А Б Комбинированный счет 1 000,00 -1 - 230,00 770,00 2 354,20 -1 -177,10 947,10 -1 -217,83 2 435,67 1 164,93 2 535,87 1 700,80 -1 -391,18 -1 -391,18 918,43 2 422,48 2 422,48 1 763,39

Рассмотрим теперь ситуацию, когда А торгует отдельно от Б. В этом случае мы де­лаем 1 ставку на каждые 4 единицы на комбинированном счете для системы А (так как это оптимальное f для одной игры). В игре с одновременными ставками мы все равно ставим 1 единицу на каждые 4,347826087 единицы на балансе счета как для А, так и для Б. Отметьте, что независимо от того, отдельная это ставка или од­новременная ставка по А и Б, мы применяем то оптимальное f, которое увеличи­вает доход при бесконечном повторении ставок.

А Б Комбинированный счет 1 000,00 -1 - 250,00 750,00 2 345,20 -1 -172,50 922,50 -1 -212,17 2 424,35 1 134,67 2 567,34 1 702,01 -1 -391,46 -1 -391,46 919,09 2 422,78 2 422,78 1 764,65

Как видите, с помощью этого метода мы получаем небольшой выигрыш, и чем больше сделок проходит, тем больше этот выигрыш. Тот же принцип применяется к торговле портфелем, где не все компоненты портфеля находятся на рынке в определенный момент времени. Вам следует торговать на оптималь­ных уровнях для комбинации компонентов (или одного компонента), чтобы получить в итоге оптимальный рост, как будто этой комбинацией компонентов (или одним компонентом) придется торговать бесконечное количество раз в будущем.

Рассмотрим теперь ситуацию, когда А торгует отдельно от Б. В этом случае мы де­лаем 1 ставку на каждые 4 единицы на комбинированном счете для системы А (так как это оптимальное f для одной игры). В игре с одновременными ставками мы все равно ставим 1 единицу на каждые 4,347826087 единицы на балансе счета как для А, так и для Б. Отметьте, что независимо от того, отдельная это ставка или од­новременная ставка по А и Б, мы применяем то оптимальное f, которое увеличи­вает доход при бесконечном повторении ставок.

А Б Комбинированный счет 1 000,00 -1 - 250,00 750,00 2 345,20 -1 -172,50 922,50 -1 -212,17 2 424,35 1 134,67 2 567,34 1 702,01 -1 -391,46 -1 -391,46 919,09 2 422,78 2 422,78 1 764,65

Как видите, с помощью этого метода мы получаем небольшой выигрыш, и чем больше сделок проходит, тем больше этот выигрыш. Тот же принцип применяется к торговле портфелем, где не все компоненты портфеля находятся на рынке в определенный момент времени. Вам следует торговать на оптималь­ных уровнях для комбинации компонентов (или одного компонента), чтобы получить в итоге оптимальный рост, как будто этой комбинацией компонентов (или одним компонентом) придется торговать бесконечное количество раз в будущем.

Потеря эффективности при одновременных ставках или торговле портфелем

Давайте вернемся к нашей игре с броском монеты 2:1. Допустим, мы собираемся одновременно сыграть в две игры: А и Б, — и существует нулевая корреляция между результатами этих двух игр. Оптимальные f для такого случая соответству­ют ставке в 1 единицу на каждые 4,347826 единицы на балансе счета, когда игры проводятся одновременно. Отметьте, что при начальном счете в 100 единиц мы заканчиваем с результатом в 156,86 единицы:


Таблица V Система А Сделка P&L Система Б Сделка P&L Счет Оптимальное f соответствует 1 единице на каждые 4,347826 единицы на счете: 100,00 -1 -23,00 -1 -23,00 54,00 2 24,84 -1 -12,42 66,42 -1 -15,28 2 30,55 81,70 2 37,58 2 37,58 156,86

Теперь давайте рассмотрим систему В. Она будет такой же, как система А и Б, только мы будем играть в эту игру без одновременного ведения другой игры. Мы сыграем 8 раз, но не 2 игры по 4 раза, как в прошлом примере. Теперь наше оптимальное f - это ставка 1 единицы на каждые 4 единицы на балансе счета. Мы, как и прежде, имеем те же 8 сделок, но лучший конечный резуль­тат (Таблица VI). Мы получили лучший конечный результат не потому, что оптимальные f не­много отличаются (оба значения f находятся на соответствующих оптимальных уровнях), а потому, что есть небольшая потеря эффективности при одновремен­ных ставках. Неэффективность является результатом невозможности изменения структуры вашего счета (т.е. рекапитализации) после каждой отдельной ставки, как в игре только по одной рыночной системе. В случае с двумя одновременными

ставками вы можете рекапитализировать счет только 3 раза, в то время как в слу­чае с 8 отдельными ставками вы рекапитализируете счет 7 раз. Отсюда возникает потеря эффективности при одновременных ставках (или при торговле портфелем рыночных систем).


Система В Счет

Сделка P&L 100, 00 -1 -25 75 2 37, 5 112, 5 -1 -28, 13 84, 38 2 42, 19 126, 56 2 63, 28 189, 84 2 94, 92 284, 77 -1 -71, 19 213, 57 -1 -53, 39 160, 18

Оптимальное f соответствует единице на каждые 4 единице на счете


Мы рассмотрели случай, когда одновременные ставки не были коррелирова-ны. Давайте посмотрим, что произойдет при положительной корреляции (+1,00):

Таблица VII Система А Система Б Сделка P&L Сделка P&L Счет 100,00 -1 -12,50 -1 -12,50 75,00 2 18,75 2 18,75 112,50 -1 -14,06 -1 -14,06 84,38 2 21,09 2 21,09 126,56

Оптимальное f соответствует единице на каждые 8 единице на счете


Отметьте, что после 4 одновременных игр при корреляции между рыночными системами +1,00 мы увеличили первоначальный счет 100 единиц до 126,56. Это соответствует TWR = 1,2656, или среднему геометрическому (даже если это ком­бинированные игры) 1,2656 ^ (1/4) =1,06066. Теперь вернемся к случаю с одной ставкой. Обратите внимание, что после 4 игр мы получим 126,56 при начальном счете в 100 единиц. Таким образом, среднее геометрическое равно 1,06066. Это говорит о том, что скорость роста та­кая же, как и при торговле с оптимальными долями на абсолютно коррелиро­ванных рынках. Как только коэффициент корреляции опускается ниже +1,00, скорость роста повышается. Таким образом, мы можем утверждать, что при комби­нировании рыночных систем ваша скорость роста никогда не будет меньше, чем в случае одиночной ставки по каждой системе, независимо от того, насколько высоки корреля­ции, при условии, что добавляемая рыночная система имеет положительное арифмети­ческое математическое ожидание. Вспомним первый пример из этого раздела, когда 2 рыночные системы имели нулевой коэффициент корреляции. Эта рыночная система увеличила счет 100 единиц до 156,86 после 4 игр при среднем геометрическом (156,86/ / 100) ^ (1/4) = 1,119. Теперь давайте рассмотрим случай, когда коэффициент кор­реляции равен -1,00. Так как при таком сценарии никогда не бывает проигрыш­ной игры, оптимальная сумма ставки является бесконечно большой суммой (дру­гими словами, следует ставить 1 единицу на бесконечно малую сумму баланса сче­та). Для примера мы сделаем 1 ставку на каждые 4 единицы на счете и посмотрим на полученные результаты:

Таблица VIII Система А Система Б Сделка P&L Сделка P&L Счет Оптимальное f соответствует 1 единице на каждые 0,00 на балансе (показана 1 единица на каждые 4): 100,00 -1 -12,50 2 25,00 112,50 2 28,13 -1 -14,06 126,56 -1 -15,82 2 31,64 142,38 2 35,60 -1 -17,80 160,18

Из этого раздела можно сделать два вывода. Первый состоит в том, что при од­новременных ставках или торговле портфелем существует небольшая потеря эффективности, вызванная невозможностью рекапитализировать счет после каждой отдельной игры. Второй заключается в том, что комбинирование ры­ночных систем, при условии, что они имеют положительные математические ожидания (даже если они положительно коррелированы), никогда не уменьшит ваш общий рост за определенный период времени. Однако когда вы продолжае­те добавлять все больше и больше рыночных систем, эффективность уменьша­ется. Если у вас есть, скажем, 10 рыночных систем, и все они одновременно не­сут убытки, совокупный убыток может уничтожить весь счет, так как вы не смо­жете уменьшить размер каждого проигрыша, как в случае последовательных сделок. Таким образом, при добавлении новой рыночной системы в портфель польза будет только в двух случаях: когда рыночная система имеет коэффициент корре­ляции меньше 1 и положительное математическое ожидание или же когда систе­ма имеет отрицательное ожидание, но достаточно низкую корреляцию с другими составляющими портфеля, чтобы компенсировать отрицательное ожидание. Каждая добавленная рыночная система вносит постепенно уменьшающийся вклад в среднее геометрическое. То есть каждая новая рыночная система улучшает среднее геометрическое все в меньшей и меньшей степени. Более того, когда вы добавляете новую рыночную систему, теряется общая эф­фективность из-за одновременных, а не последовательных результатов. В неко­торой точке добавление еще одной рыночной системы принесет больше вреда, чем пользы.

Назад Дальше