Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 19 стр.


Если мы просуммируем значения столбца, который включает 61 ассоциирован­ную вероятность, получим 7,979105. Поэтому среднее геометрическое при f= 0,01 равно:

G = 1,0053555695 ^ (1/7,979105) = 1,00535555695 ^ 0,1253273393 = 1,00066963

Мы можем также рассчитать среднюю геометрическую сделку (GAT). Это сумма, которую вы бы заработали в среднем на контракт за сделку, если бы торговали при этом распределении результатов и при данном значении f.

где G(f) = среднее геометрическое для данного значения f;

W = ассоциированное P&L наихудшего случая.

GAT = (1,00066963 - 1) * (-4899,57 / (-0,01)) = 0,00066963 * 489957 = 328,09

Таким образом, в среднем на контракт можно ожидать выигрыша в 328,09 доллара. Теперь перейдем к следующему значению f, которое должно те­стироваться в соответствии с выбранной процедурой поиска оптимального f. В нашем случае мы проверяем значения f от 0 до 1 с шагом 0,01, так что следую­щим тестируемым значением f будет 0,02. Рассчитаем новый столбец ассоции­рованных HPR, а также найдем TWR и среднее геометрическое. Значение f, ко­торое в результате даст наивысшее среднее геометрическое, является оптималь­ным (для вводных параметров, которые мы использовали). Если бы для данного примера мы продолжили поиск оптимального f, то получили бы f= 0,744 (при расчете оптимального f используется шаг 0,001). Среднее геометрическое в этом случае равно 1,0265. Соответствующая средняя геометрическая сделка составит 174,45 доллара.

Следует отметить, что само по себе значение TWR не столь важно. Когда мы рассчитываем среднее геометрическое параметрически, как в этом примере, TWR просто является промежуточным шагом для получения этого среднего гео­метрического. Теперь мы можем рассчитать, каким было бы наше TWR после Х сделок, возведя среднее геометрическое в степень X. Поэтому если мы хотим рассчитать TWR для 232 сделок при среднем геометрическом 1,0265, то следует возвести 1,0265 в степень 232, что даст 431,79. В таком случае, при торговле с оптимальным f =0,744 можно ожидать прибыль 43079% ((431,79 - 1) * 100) после 232 сделок. Еще одним побочным продуктом, который мы рассчитаем, будет порог гео­метрической торговли (2.02):

Порог геометрической торговли = 330,13/174,45 * -4899,57 / -0,744 = 12462,32

Отметьте, что значение средней арифметической сделки 330,13 доллара не явля­ется результатом, полученным с помощью этого метода, а используется как один из вводных параметров.

Мы можем преобразовать оптимальное f в количество контрактов для торгов­ли с помощью уравнения:

(3.34) K=E/Q,

где К = число контрактов для торговли;

Е = текущий баланс счета.

(3.35) Q=W/(-f),

где W = ассоциированное P&L наихудшего случая;

Отметьте, что переменная Q представляет собой число, на которое вы должны разделить баланс счета, чтобы узнать сколькими контрактами торговать, при этом баланс должен ежедневно корректироваться. Возвращаясь к нашему примеру: Q = -4899,57 / -0,744 = $6585,44

Следовательно, мы будем торговать 1 контрактом на каждые 6585,44 доллара на балансе счета. Для счета размером в 25 000 долларов это означает, что мы будем торговать:

К =25 000/6585,44 = 3,796253553

Так как мы не можем торговать дробными контрактами, то должны округлить это число 3,796253553 вниз до ближайшего целого числа. Поэтому для счета в 25 000 долларов мы будем торговать 3 контрактами. Причина, по которой мы всегда будем округлять вниз, а не вверх, состоит в том, что плата за нахождение ниже оптималь­ного f меньше, чем плата за нахождение выше.

Отметьте, насколько чувствительна торговля оптимальным числом кон­трактов к наихудшему убытку. Наихудший убыток зависит только от того, на сколько стандартных отклонений вы отходите влево от среднего. Данный ограни­чительный параметр, интервал, выраженный в количестве стандартных отклоне­ний, очень важен. В нашем расчете мы выбрали три сигма. Это означает, что мы допускаем проигрыш в три сигма. Однако проигрыш за пределами трех сигма мо­жет сильно нам повредить, если он выйдет слишком далеко за это значение. По­этому вам следует быть очень осторожными с выбором этого ограничительного параметра. От величины интервала зависит очень многое. Заметьте, что для простоты изложения мы не учитывали комиссионные и проскальзывание. Если учитывать комиссионные и проскальзывание, то следу­ет вычесть Х долларов комиссионных и проскальзывания из каждой сделки в самом начале. Затем следует рассчитать среднюю арифметическую сделку и стандартное отклонение на основе 232 измененных сделок и далее выпол­нить уже известную процедуру. Теперь рассмотрим сценарий «что если». Допустим, мы хотим посмотреть, что произойдет, если прибыль в средней сделке уменьшится вдвое (сжатие = 0,5). Да­лее предположим, что рынок становится очень волатильным и дисперсия увели­чивается на 60% (растяжение = 1,6). Подставляя эти параметры в систему, мы мо­жем посмотреть, как они влияют на оптимальное f, и скорректировать нашу тор­говлю до того, как эти изменения произойдут на самом деле. Таким образом, оптимальное f будет равно 0,262, что соответствует торговле 1 контрактом на каж­дые 31 305,92 доллара на балансе счета (так как P&L наихудшего случая сильно за-

висит от растяжения и сжатия). Среднее геометрическое упадет до 1,0027, сред­няя геометрическая сделка уменьшится до 83,02 доллара, a TWR за 232 сделки бу­дет равно 1,869. Такие изменения вызваны уменьшением средней сделки на 50% и увеличением стандартного отклонения на 60%, что вполне может произойти на практике. Также возможно, что будущее будет более благоприятно, чем прошлое. Мы можем проанализировать другую ситуацию. Допустим, мы хотим посмот­реть, что произойдет, если наша средняя прибыль увеличится на 10%. Для этого следует ввести значение сжатия 1,1. Параметры «что если», растяжение и сжатие, крайне важны в управлении капиталом.

Чем ближе ваше распределение торговых P&L к нормальному, тем лучше бу­дет работать метод. Проблема почти всех методов управления деньгами состоит в том, что следует учитывать определенный «коэффициент ухудшения». Здесь ухудшение — это разница между нормальным распределением и распределени­ем, которое вы реально получаете. Разница между ними и есть коэффициент ухудшения, и чем больше этот коэффициент, тем менее эффективным стано­вится метод.

С помощью вышеописанного метода мы определили, что торговля 1 контрак­том на каждые 6585,44 доллара на балансе счета оптимальна. Однако если бы мы совершили эти сделки на практике и определили оптимальное f эмпирически, то оптимальным был бы 1 контракт на каждые 7918,04 доллара на балансе счета. Как можно видеть, использование нормального распределения сместило нас слегка вправо вдоль кривой f и привело к торговле несколько большим числом контрак­тов, чем предлагает эмпирический метод.

Однако, как мы увидим позже, многое говорит в пользу того, что будущее рас­пределение цен будет нормальным. Когда мы покупаем или продаем опцион, предположение, что будущее распределение изменений цены базового инстру­мента будет нормальным, уже заложено в цену опциона. Точно так же можно ска­зать, что трейдеры, не использующие механические системы, получат в будущем результаты, которые нормально распределены.

В методе, описанном в этой главе, используются неприведенные данные. При использовании приведенных данных метод будет выглядеть следующим образом:

1. До того как данные нормированы, их следует привести к текущим ценам пу­тем преобразования всех торговых прибылей и убытков в процентные при­были и убытки с помощью уравнений с (2.10а) по (2.10в). Затем эти процент­ные прибыли и убытки следует умножить на текущую цену

2. Когда вы перейдете к нормированию этих данных, нормируйте приведен­ные данные, используя среднее и стандартное отклонение приведенных данных.

3. Далее, определите оптимальное f, среднее геометрическое и TWR. Средняя геометрическая сделка, средняя арифметическая сделка и порог геометри­ческой торговли справедливы только для текущей цены базового инструмента. Когда цена базового инструмента изменяется, процедура должна быть проведена заново. Когда вы перейдете к повторному проведению про­цедуры с другой ценой базового инструмента, вы получите то же оптималь­ное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.

4. Количество контрактов для торговли, рассчитываемое с помощью уравне­ния (3.34), соответствующим образом изменится. P&L наихудшего случая, переменная W, используемая в уравнении (3.34), также изменится.

Из этой главы, мы узнали, как найти оптимальное f по распределению вероятности. Мы использовали нормальное распределение, так как оно описывает многие есте­ственно происходящие процессы. Кроме того, с ним легче работать, чем со многими другими распределениями, так как можно рассчитать интеграл функции нормально­го распределения с помощью уравнения (3.21)[16]. Однако нормальное распределение за­частую является неполной моделью для распределения торговых прибылей и убытков. Какая модель будет приемлемой для наших целей? В следующей главе мы ответим на этот вопрос и будем полагаться на методы из главы 3 при работе с любым видом рас­пределения вероятности независимо от того, существует интеграл функции распре­деления или нет.

Глава 4

Параметрические методы для других распределений


Из предыдущей главы мы узнали, как найти оптимальное f и его побочные продукты при нормальном распределении. Тот же ме­тод применим к любому другому распределению, где известна функция распределения вероятности (то есть интеграл плотно­сти распределения вероятности). О многих известных распреде­лениях и об их функциях распределения вероятности рассказано в приложении В.

К сожалению, большинство распределений торговых P&L плохо описываются функциями нормального и других распределений. В этой главе мы сначала обратимся к проблеме неопределенной природы распределения торговых P&L и далее изучим метод планирования сценария — естественное продолжение идеи оп­тимального/. Этот метод широко применяется и позволяет находить оптимальное f по ячеистым распределениям. Далее мы перейдем к следующей главе, посвященной опционам и одновре­менной торговле по нескольким позициям. Прежде чем смоделировать реальное распределение торговых P&L, мы должны найти метод сравнения двух распределений.



Тест Колмогорова-Смирнова (К-С)

Хи-квадрат тест, без сомнения, является наиболее популярным из всех методов сравнения двух распределений. Так как многие ориентированные на рынок при­ложения, помимо рассматриваемых в этой главе, часто используют хи-квадрат тест, то он описан в Приложении А. Однако для наших целей наилучшим методом будет тест К-С. Этот очень эффективный тест применим к неячеистым распреде­лениям, которые являются функцией одной независимой переменной (в нашем случае, прибыль за одну сделку).

Все функции распределения вероятности имеют минимальное значение 0 и мак­симальное значение 1. То, как они ведут себя между ними, и отличает их. Тест К-С измеряет очень простую переменную D, которая определяется как максимальное аб­солютное значение разности между двумя функциями распределения вероятности. Тест К-С достаточно прост. N объектов (в нашем случае сделок) нормируются (вычитается среднее значение, и полученная разность делится на стандартное от­клонение) и сортируются в порядке возрастания. Когда мы проходим эти отсор­тированные и нормированные сделки, накопленная вероятность рассматривае­мого количества сделок делится на N. Когда мы берем первую сделку в отсортиро­ванной последовательности с наименьшим стандартным значением, функция распределения вероятности (cumulative density function, далее — ФРВ) равна 1/N. Для каждого стандартного значения, которое мы проходим, приближаясь к наи­большему стандартному значению, к числителю прибавляется единица. В конце последовательности наша ФРВ будет равна N/N, или 1. Для каждого стандартного значения мы можем рассчитать теоретическое рас­пределение. Таким образом, мы можем сравнить фактическую функцию распре­деления вероятности с любой теоретической функцией распределения вероятно­сти. Переменная D, или статистика К-С (К-С statistic), равна наибольшему рас­стоянию между значением нашей фактической функции распределения вероятности и значением теоретического распределения ФРВ при этом же стан­дартном значении. При сравнении фактической ФРВ для данного стандартного значения с теоре­тической ФРВ для этого же стандартного значения мы должны также сравнить теоретическую ФРВ предыдущего стандартного значения с фактической ФРВ те­кущего стандартного значения.

Для того чтобы прояснить эту ситуацию, посмотрим на рисунок 4-1. Отметьте. что в точке А фактическая кривая находится выше теоретической. Поэтому мы сравниваем текущее значение фактической ФРВ с текущим теоретическим значе­нием для нахождения наибольшей разности. Однако в точке В фактическая кри­вая находится ниже теоретической. Поэтому мы сравниваем предыдущее факти­ческое значение с текущим теоретическим значением. Идея состоит в том, что в результате мы выберем наибольшую разность.

Для каждого стандартного значения нам надо взять абсолютное значение разно­сти между текущим значением фактической ФРВ и текущим значением теорети­ческой ФРВ. Нам также надо взять абсолютное значение разности между преды­дущим значением фактической ФРВ и текущим значением теоретической ФРВ. Повторив эту операцию для всех стандартных значений точек, где фактическая ФРВ делает скачок вверх на 1/N, и взяв наибольшую разность, мы определим пе­ременную D.

Рисунок 4-1 Тест К-С

Чем ниже значение D, тем больше похожи два распределения. Мы можем преоб­разовать значение D в уровень значимости с помощью следующей формулы:

где SIG = уровень значимости для данного D и N;

D = статистика К-С;

N = количество сделок, по которым определена статистика К-С;

% = оператор, означающий остаток после деления. Здесь J%2 дает остаток после деления J на 2;

ЕХР() = экспоненциальная функция.

Нет необходимости суммировать значения J от 1 до бесконечности. Уравнение сходится (обычно очень быстро) к определенному значению. После того как пре­дел достигнут (согласно допуску, установленному пользователем), нет необходи­мости продолжать суммирование значений.

Рассмотрим уравнение (4.01) на примере. Допустим, у нас есть 100 сделок, а значение статистики К-С равно 0,04:

J1 = (1 % 2) * 4 - 2 * ЕХР(-2 * 1^2 * (100^(1/2) * 0,04) л 2) =1*4-2* ЕХР(-2 * ^ 2 * (10 * 0,04)^ 2) = 2 * ЕХР(-2 * 1^2 * 0,^ 2) = 2*ЕХР(-2*1*0,16) = 2 * ЕХР(-0,32) = 2 * 0,726149 = 1,452298

Таким образом, нашим первым значением является 1,452298. Теперь прибавим следующее значение:

J2 = (2 % 2) * 4 - 2 * ЕХР(-2 * 2^ 2 * (100^ (1/2) * 0,04)^2) =0*4-2* ЕХР(-2 * 2^ 2 * (10 * 0,04)^ 2) = -2 * ЕХР(-2 * 2^ 2 * 0,4^ 2) = -2*ЕХР(-2*4*0,16) = -2*ЕХР(-1,28) = -2 * 0,2780373 = -0,5560746

Прибавив -0,5560746 к нашей текущей сумме 1,452298, мы получим новую теку­щую сумму 0,8962234. Затем снова увеличим J на 1, теперь оно будет равно 3, и решим уравнение. Получившееся значение прибавим к текущей сумме 0,8962234. Следует поступать таким образом и дальше, пока текущая сумма в пределах допуска не перестанет изменяться. В нашем примере предельное значе­ние будет равно 0,997. Этот ответ означает, что при 100 сделках и значении стати­стики К-С 0,04 мы можем быть уверены на 99,7%, что фактическое распределе­ние генерировано функцией теоретического распределения. Другими словами, мы можем быть на 99,7% уверены, что функция теоретического распределения представляет фактическое распределение. В данном случае это очень хороший уровень значимости.


Создание характеристической функции распределения


Нормальное распределение вероятности далеко не всегда является хорошей мо­делью распределения торговых прибылей и убытков. Более того, ни одно из рас­пространенных распределений вероятности не является идеальной моделью. По­этому мы должны сами создать функцию для моделирования распределения на­ших торговых прибылей и убытков.

Распределение изменений цены в общем случае относится к распределе­ниям Парето (см. приложение В). Распределение торговых P&L можно счи­тать трансформацией распределения цен. Эта трансформация является ре­зультатом торговых методов, когда трейдеры пытаются понизить свои убыт­ки и увеличить прибыли, следовательно, распределение торговых P&L можно отнести к распределениям Парето. Однако распределение, которое мы будем изу­чать, не является распределением Парето. Распределение Парето, как и все другие функции распределения, модели­рует определенное вероятностное явление. Оно моделирует распределение сумм независимых, идентично распределенных случайных переменных. Фун­кция распределения, которую мы будем изучать, не моделирует конкретное вероятностное явление. Она моделирует многие унимодальные функции рас­пределения. Поэтому она может повторить форму и плотность вероятности распределения Парето, а также любого другого унимодального распределения.

Теперь мы создадим эту функцию. Для начала рассмотрим следующее уравнение:

(4.02) Y=1/(X^ 2+1)

График этого уравнения — обычная колоколообразная кривая, симметрич­ная относительно оси Y, как показано на рисунке 4-2.

Таким образом, мы будем строить свои рассуждения, используя это общее уравнение. Переменную Х можно представить как число стандартных еди­ниц с каждой стороны от среднего, т.е. от оси Y. Мы можем использовать первый момент этого «распределения», расположение его среднего значения, добавив значение для изменения расположения на оси X. Уравнение изменится следую­щим образом:

(4.03) Y=1/(X-LOC^2+1),

где Y = ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения.

Рисунок 4-2 LOC = 0 SCALE = I SKEW = 0 KURT = 2

Рисунок 4-3 LOC =0,5, SCALE = 1, SKEW = 0, KURT= 2

Назад Дальше