Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 3 стр.


При торговле без заемных средств (т.е. без «рычага»), например при управле­нии портфелем акций, вес и количество являются синонимами, но в ситуации с рычагом (например портфель фьючерсных торговых систем) вес и количество от­личаются. В этой книге вы познакомитесь с концепцией, которая впервые была освещена в книге «Формулы управления портфелем», заключающейся в том, что необходимо знать оптимальное торговое количество, которое является функцией оптимального взвешивания.

Как только мы изменим современную теорию портфеля и отделим вес от ко­личества, то сможем вернуться к торговле акциями с этим теперь уже перерабо­танным инструментом. Мы увидим, как почти любой портфель акций без рычага можно улучшить, превратив его в портфель с рычагом, соединив с безрисковым активом. В дальнейшем все станет вам интуитивно очевидно. Степень риска (или консервативности) является в таком случае функцией рычага, который трейдер желает применить к своему портфелю. Это означает, что положение данного трейдера в спектре «неприятия риска» зависит не от используемого инструмента, а от рычага, который он выбирает для торговли. Если говорить коротко, то книга научит вас управлению риском. Мало трейде­ров имеют представление о том, что такое управление риском. Это не полное уп­разднение риска, поскольку тогда вы полностью упразднили бы выигрыш, и не просто вопрос максимизации потенциального дохода по отношению к потенци­альному риску. Управление риском относится к стратегии принятия решений, ко­торая имеет целью максимизацию отношения потенциальной прибыли к потенци­альному риску при определенном приемлемом уровне риска. Чтобы понять это, мы должны сначала познакомиться с оптимальным f, компо­нентом уравнения, выражающим оптимальное количество для сделки. Затем мы должны научиться комбинировать оптимальное f с оптимальным взвешиванием портфеля. Такой портфель будет максимизировать потенциальную прибыль по от­ношению к потенциальному риску. Сначала мы раскроем эти концепции с эмпири­ческой точки зрения (вкратце повторим книгу «Формулы управления портфелем»), затем изучим их с более мощной точки зрения, параметрической. В отличие от эм­пирического подхода, который использует прошлые данные, параметрический подход использует прошлые данные и некоторые параметры. Затем эти параметры используются в модели, дающей преимущественно те же ответы, что и эмпиричес­кий подход. Сильной стороной параметрического подхода является то, что вы мо­жете изменить значения параметров, чтобы посмотреть, как изменится результат. Эмпирический подход не позволяет этого сделать. Однако эмпирические методы также имеют сильные стороны. Они в основном проще с точки зрения математики, поэтому их легче использовать на практике. По этой причине сначала рассматри­ваются эмпирические методы. В конце нашего исследования мы увидим, как применять данные концепции при заданном пользователем уровне риска, и узнаем стратегии, которые макси­мизируют рост. В книге рассмотрено очень много тем. Я попытался сделать ее настолько сжа­той, насколько это вообще возможно. Некоторый материал может быть не совсем вам понятен, и, возможно, он поднимет больше вопросов, чем даст ответов. Если так оно и есть, значит я добился одной из целей этой книги. Большинство книг имеет одно «сердце», одну центральную концепцию, из ко­торой проистекает вся книга. Эта книга отличается тем, что у нее несколько таких концепций. Некоторые посчитают ее трудной, если подсознательно ищут книгу с одним «сердцем». Я не приношу за это извинений; это не ослабляет логики книги, наоборот, обогащает ее. Чтобы полностью понять материал, изложенный в книге, может быть, вам придется прочитать ее два или даже три раза. Одной из особенностей книги является более широкая трактовка концепции принятия решений в среде, характеризуемой геометрическими следствиями. Среда геометрического следствия — это среда, где количество, с которым вы должны работать сегодня, является функцией предыдущих результатов. Я думаю, что это освещает большую часть среды, в которой мы живем! Оптимальное f— это регу­лятор роста в такой среде, а побочные продукты оптимального f говорят о скоро­сти роста в данной среде. Из этой книги вы узнаете, как определять оптимальное 1И его побочные продукты для любой формы распределения. Это статистический инструмент, который применим к различным сферам в бизнесе и науке. Надеюсь, что вы попытаетесь использовать описанные инструменты, чтобы найти опти­мальные 1не только для рынков, но и для других областей. Много лет торговое сообщество обсуждало концепцию «управления деньга­ми». Однако в итоге управление деньгами характеризовалось пестрым набором правил, многие из которых были некорректны. Я надеюсь, что эта книга даст трейдерам точность в сфере управления капиталом.


Глава 1

Эмпирические методы

Эта глава является кратким изложением книги «Формулы уп­равления портфелем». Цель главы — довести уровень читателей, которые не знакомы с эмпирическими методами, до уровня тех, кто уже знаком с ними.

Какой долей счета торговать?

Когда вы начинаете торговлю, то должны принять два решения: какую позицию открыть, длинную или короткую, и каким количеством торговать. Решение о ко­личестве всегда зависит от баланса на вашем счете. При счете в 10 000 долларов приобретение 100 контрактов на золото будет слишком рискованным. Если на вашем счету 10 миллионов долларов, разве не очевидно, что приобретение одного контракта на золото почти никак не отразится на счете? Признаем мы это или нет, решение относительно того, каким количеством контрактов в определенный момент времени торговать, зависит от уровня баланса на счете. Если мы будем использовать определенную долю счета в каждой сделке (дру­гими словами, когда будем торговать количеством, соотносимым с размером на­шего счета), то добьемся более быстрого прироста капитала. Количество зависит не только от баланса на нашем счете, а является также функцией некоторых других переменных: нашего предполагаемого убытка наи­худшего случая в следующей сделке; скорости, с которой мы хотим, чтобы рос наш счет; зависимости от прошлых сделок. Доля счета, которую следует исполь­зовать для торговли, будет зависеть от многих переменных, и мы попытаемся со­брать все эти переменные, включая уровень баланса счета, чтобы в итоге принять достаточно субъективное решение относительно того, сколькими контрактами или акциями торговать. Из этой главы вы узнаете, как принимать математически верные решения в отношении количества и не основывать свои действия на субъективном и, воз­можно, ошибочном суждении. Вы увидите, что если использовать неправильное количество, то придется заплатить чрезмерную цену, и эта цена возрастет с тече­нием времени. Большинство трейдеров не уделяет должного внимания проблеме выбора ко­личества. Они считают, что этот выбор в значительной мере случаен, и не имеет значения, какое количество использовать, важно только то, насколько они правы в отношении направления торговли. Более того, возникает ошибочное впечатле­ние, что существует прямая зависимость между тем, сколько контрактов откры­вать, и тем, сколько можно выиграть или проиграть с течением времени. Это неверно. Как мы увидим, отношение между потенциальным выигрышем и количеством не выражается прямой линией. Это кривая. У этой кривой есть пик, и именно на этом пике мы достигнем максимального потенциального выиг­рыша. Из этой книги вы узнаете, что решение о количестве, используемом в оп­ределенной сделке, также важно, как и решение о длинной или короткой пози­ции. Мы опровергнем ложное мнение большинства трейдеров и покажем, что уровень счета зависит от правильного выбора количества контрактов не в мень­шей степени, чем от правильного направления торговли. Не вы управляете цена­ми, и не от вас зависит, будет следующая сделка прибыльной или убыточной. Однако количество контрактов, которые вы открываете, зависит только от вас. Поэтому ваши ресурсы будут использованы с большей отдачей, если сконцентрироваться на верном количестве. При любой сделке вы хотя бы приблизительно предполагаете, каким может быть убыток наихудшего случая. Можно даже не осознавать этого, но, когда вы начинаете торговлю, у вас есть ощущение, пусть даже подсознательное, что мо­жет произойти в худшем случае. Восприятие худшего случая вместе с уровнем баланса на вашем счете формирует решение о том, сколькими контрактами торговать.

Таким образом, мы можем сказать, что существует некий делитель (число между 0 и 1) наибольшего предполагаемого убытка для определения количества контрактов. Например, если при счете в 50 000 долларов вы ожидаете, в худшем случае, убыток 5000 долларов на контракт, и открыто 5 контрактов, то делителем будет 0,5, так как:

Таким образом, мы можем сказать, что существует некий делитель (число между 0 и 1) наибольшего предполагаемого убытка для определения количества контрактов. Например, если при счете в 50 000 долларов вы ожидаете, в худшем случае, убыток 5000 долларов на контракт, и открыто 5 контрактов, то делителем будет 0,5, так как:

50 000/(5000/0,5) =5

Другими словами, у вас есть 5 контрактов на счет в 50 000 долларов, т. е. 1 кон­тракт на каждые 10000 долларов баланса. Вы ожидаете в худшем случае потерять 5000 долларов на контракт, таким образом, вашим делителем будет 0,5. Если бы у вас был один контракт, то делителем в этом случае было бы число 0,1, так как:

50 000/(5000/0,1)=1

Этот делитель мы назовем переменной f. Таким образом, сознательно или подсоз­нательно при любой сделке вы выбираете значение f, когда решаете, сколько кон­трактов или акций приобрести.

Теперь посмотрите на рисунок 1-1. На нем представлена игра, где у вас 50% шансов выиграть 2 доллара против 50% шансов потерять 1 доллар в каждой игре. Отметьте, что здесь оптимальное f составляет 0,25, когда TWR составляет 10,55 после 40 ставок (20 последовательностей +2, -1). TWR — это «относитель­ный конечный капитал» (Terminal Wealth Relative), он представляет доход по ва­шим ставкам в виде множителя. TWR = 10,55 означает, что вы увеличили бы в 10,55 раз ваш первоначальный счет, или получили бы 955% прибыли. Теперь посмотрите, что произойдет, если вы отклонитесь всего лишь на 0,15 от опти­мального f= 0,25. Когда f равно 0,1 или 0,4, ваш TWR = 4,66. Это не составляет даже половины того, что будет при 0,25, причем вы отошли только на 0,15 от оп­тимального значения и сделали только 40 ставок!

О какой сумме в долларах мы говорим? При f = 0,1 вы ставите 1 доллар на каж­дые 10 долларов на счете. При f= 0,4 вы ставите 1 доллар на каждые 2,50 долларов на счете. В обоих случаях мы получаем TWR = 4,66. При f= 0,25 вы ставите 1 дол­лар на каждые 4 доллара на счете. Отметьте, что если вы ставите 1 доллар на каж­дые 4 доллара на счете, то выигрываете в два раза больше после 40 ставок, чем в случае ставки одного доллара на каждые 2,50 доллара на вашем счете! Очевидно, что не стоит излишне увеличивать ставку. При ставке 1 доллар на каждые 2,50 доллара вы получите тот же результат, что и в случае ставки четверти этой суммы, то есть 1 доллар на каждые 10 долларов на вашем счете! Отметьте, что в игре 50/50, где вы выигрываете вдвое больше, чем проигрываете, при f= 0,5 вы только «оста­етесь при своих»! При f больше 0,5 вы проигрываете в этой игре, и теперь оконча­тельное разорение — это просто вопрос времени! Другими словами, если f (в игре 50/50, 2:1) на 0,25 отклоняется от оптимального, вы будете банкротом с вероят­ностью, которая приближается к определенности, если продолжать играть доста­точно долго. Таким образом, нашей целью будет объективный поиск пика кривой f для данной торговой системы.


0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 значения f

Рисунок 1-1 20 последовательностей +2, -1

В этой книге определенные концепции освещаются с позиции азартных игр. Основное отличие азартной игры от спекуляции заключается в том, что азар­тная игра создает риск (и отсюда многие настроены против нее), в то время как спекуляция является переходом уже существующего риска (предположи­тельного) от одной стороны к другой. Иллюстрации азартных игр использу­ются для наглядного примера излагаемых концепций. Математика управления капиталом и принципы, используемые в торговле и азартных играх, доволь­но похожи. Основная разница состоит в том, что в математике азартных игр мы обычно имеем дело с бернуллиевыми результатами (только два возмож­ных исхода), в то время как в торговле мы сталкиваемся со всем распределе­нием результатов, которые только могут быть в реальной сделке.


Основные концепции

Вероятность задается числом от 0 и 1, которое определяет, насколько вероятен ре­зультат, где 0 — это полное отсутствие вероятности происхождения определенного события, а 1 означает, что рассматриваемое событие определенно произойдет. Про­цесс независимых испытаний (отбор с замещением) является последовательностью результатов, где значение вероятности постоянно от одного события к другому Бросок монеты является примером такого процесса. Каждый бросок имеет вероят­ность 50/50 независимо от результата предыдущего броска. Даже если последние 5 раз выпадал орел, вероятность того, что при следующем броске выпадет орел, все равно не изменяется и составляет 0,5.

Другой тип случайного процесса характеризуется тем, что результат предыду­щих событий влияет на значение вероятности, и, таким образом, значение веро­ятности непостоянно от одного события к другому Эти виды событий называют­ся процессами зависимых испытаний (отбор без замещения). Игра «21 очко» являет­ся примером такого процесса. После того как вытаскивают карту, состав колоды изменяется. Допустим, что новая колода перемешивается и одна карта удалена, скажем, бубновый туз. До удаления этой карты вероятность вытянуть туза была 4/52, или 0,07692307692. Теперь, когда туза вытащили из колоды и не вернули об­ратно, вероятность вытянуть туза при следующем ходе составляет 3/51, или 0,05882352941.

Различие между независимыми и зависимыми испытаниями состоит в том, что вероятность или фиксирована (независимые попытки), или меняется (зависимые попытки) от одного события к другому, в зависимости от предыдущих результатов. Фактически это и есть единственное различие.

Серийный тест

Когда в случае с колодой карт мы проводим отбор без замещения, можно путем проверки определить, существует ли зависимость. Для определенных событий (таких, как поток прибыли и убытков по сделкам), где зависимость не может быть определена путем проверки, мы будем использовать серийный тест. Серий­ный тест подскажет нам, имеет ли наша система больше (или меньше) периодов последовательных выигрышей и проигрышей, чем случайное распределение.

Цель серийного теста — найти счет Z для периодов выигрышей и проигрышей в системной торговлеe. Счет Z означает, на сколько стандартных отклонений вы удалены от среднего значения распределения. Таким образом, счет Z = 2,00 озна­чает, что вы на 2,00 стандартных отклонения удалились от среднего значения (ожидание случайного распределения периодов выигрышей и проигрышей).

Счет Z — это просто число стандартных отклонений, на которое данные отстоят от среднего значения нормального распределения вероятности. Например, счет Z

в 1,00 означает, что данные, которые вы тестируете, отклонены на 1 стандартное отклонение от среднего значения.

Счет Z затем переводится в доверительную границу, которая иногда также на­зывается степенью достоверности. Площадь под кривой нормального распреде­ления вероятности шириной в 1 стандартное отклонение с каждой стороны от среднего значения равна 68% всей площади под этой кривой. Преобразуем счет Z в доверительную границу. Связь счета Z и доверительной границы следующая: счет Z является числом стандартных отклонений от среднего значения, а довери­тельная граница является долей площади под кривой, заполненной при таком числе стандартных отклонений.


Доверительная Счет Z граница(%) 99,73 3,00 99 2,58 98 2,33 97 2,17 96 2,05 95,45 2,00 95 1,96 90 1,64

При минимальном количестве 30 закрытых сделок мы можем рассчитать счет Z. Попытаемся узнать, сколько периодов выигрышей (проигрышей) можно ожи­дать от данной системы? Соответствуют ли периоды выигрыша (проигрыша) тес­тируемой системы ожидаемым? Если нет, существует ли достаточно высокая до­верительная граница, чтобы допустить, что между сделками существует зависи­мость, т.е. зависит ли результат текущей сделки от результата предыдущих сделок? Ниже приведено уравнение серийного теста. Счет Z для торговой системы равен:

(1.1) Z=(N*(R-0,5)-Х)/((Х*(Х-N))/(N-1))^(1/2), где

N = общее число сделок в последовательности;

R = общее число серий выигрышных или проигрышных сделок;

X=2*W*L;


W = общее число выигрышных сделок в последовательности;

L = общее число проигрышных сделок в последовательности.

Этот расчет можно провести следующим образом:

1. Возьмите данные по вашим сделкам:

A) Общее число сделок, т.е. N.

Б) Общее число выигрышных сделок и общее число проигрышных сделок.

Теперь рассчитайте X.

Х = 2 * (Общее число выигрышей) * (Общее число проигрышей).

B) Общее число серий в последовательности, т.е. R.

2. Предположим, что произошли следующие сделки:

-3, +2, +7, -4, +1, -1, +1, +6, -1, 0, -2, +1.

Чистая прибыль составляет +7. Общее число сделок 12, поэтому N = 12. Теперь нас интересует не то, насколько велики выигрыши и проигрыши, а то, сколько было выигрышей и проигрышей, а также серий. Поэтому мы можем переделать наш ряд сделок в простую последовательность плюсов и минусов. Отметьте, что сделка с нулевой прибылью считается проигрышем. Таким образом:

Назад Дальше