Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 9 стр.


Математическое ожидание равно:

МО = 2,9 * 0,25 + 0,9 * 0,25 - 0,1 * 0,25 - 2,1 * 0,25 = 0,725 + 0,225 - 0,025 - 0,525 =0,4

Математическое ожидание равно 0,40 доллара. Оптимальное f в этой последова­тельности составляет 0,26, или 1 ставка на каждые 8,08 доллара на балансе счета (так как наибольший проигрыш здесь равен -2,10 доллара). Таким образом, мак­симальный исторический проигрыш может быть 26% (примерно такой же, что и в простой игре с положительным математическим ожиданием). Однако в этом примере происходит сглаживание уменьшении баланса. Если бы мы просто рас­сматривали игру с положительным ожиданием, то третья последовательность принесла бы нам максимальный проигрыш. Так как мы комбинируем две систе­мы, третья последовательность более ровная. Это единственный плюс. Среднее

геометрическое здесь равно 1,025, то есть скорость роста в два раза меньше, чем при простой игре с положительным математическим ожиданием. Мы делаем 4 ставки (когда могли бы сделать только 2 ставки в простой игре с положительным ожиданием), а больше не зарабатываем:


1,0607^2= 1,12508449

1,025^4= 1,103812891

Очевидно, что при диверсификации вы должны использовать такие рыночные системы, которые имеют самую низкую корреляцию прибылей друг к другу, и же­лательно отрицательную корреляцию. Вы должны понимать, что уменьшение ба­ланса худшего случая едва ли будет смягчено диверсификацией, хотя вы сможете смягчать многие более слабые уменьшения баланса. Наибольшая польза диверси­фикации состоит в улучшении среднего геометрического. Метод поиска оптималь­ного портфеля путем рассмотрения чистых дневных HPR упраздняет необходи­мость смотреть за тем, сколько сделок в каждой рыночной системе произошло. Использование этого метода позволит вам наблюдать только за средним геомет­рическим независимо от частоты сделок. Таким образом, среднее геометрическое становится единственной статистической оценкой того, насколько прибыльным является портфель. Главная цель диверсификации — это получение наивысшего среднего геометрического.

Как разброс результатов затрагивает геометрический рост

После того как мы признали тот факт, что, хотим мы того или нет, сознательно или нет, количество для торговли определяется по уровню баланса на счете, можно рассматривать HPR, а не денежные суммы. Таким образом, мы прида­дим управлению деньгами определенность и точность. Мы сможем проверить наши стратегии управления деньгами, составить правила и сделать определен­ные выводы. Посмотрим, как связан геометрический рост и разброс результа­тов (HPR).

В этой дискуссии мы для простоты будем использовать пример азартной игры. Рассмотрим две системы: систему А, которая выигрывает 10% времени и имеет отношение выигрыш/проигрыш 28 к 1, и систему В, которая выигрывает 70% времени и имеет отношение выигрыш/проигрыш 1,9 к 1. Наше математическое ожидание на единицу ставки для А равно 1,9, а для В равно 0,4. Поэтому мы мо­жем сказать, что для каждой единицы ставки система А выиграет, в среднем, в 4,75 раз больше, чем система В. Но давайте рассмотрим торговлю фиксирован­ной долей. Мы можем найти оптимальные f, разделив математическое ожидание на отношение выигрыш/проигрыш. Это даст нам оптимальное f = 0,0678 для А и 0,4 для В. Средние геометрические для каждой системы при соответствующих значениях оптимальных f составят:


А= 1,044176755

В= 1,0857629

Как видите, система В, несмотря на то что ее математическое ожидание пример­но в четыре раза меньше, чем системы А, приносит почти в два раза больше за ставку (доходность 8,57629% за ставку, когда вы реинвестируете с оптимальным f), чем система А (которая приносит 4,4176755% за ставку, когда вы реинвести­руете с оптимальным f).


Система % Выигрышей Выигрыш: Проигрыш МО f Среднее геометрическое А 10 28: 1 1,9 0,0678 1,0441768 В 70 1,9:1 0,4 0,4 1,0857629

Проигрыш 50% по балансу потребует 100% прибыли для возмещения; 1,044177 в степени Х будет равно 2,0, когда Х приблизительно равно 16,5, то есть для возме­щения 50% проигрыша для системы А потребуется более 16 сделок. Сравним с сис­темой В, где 1,0857629 в степени Х будет равно 2,0, когда Х приблизительно равно 9, то есть для системы В потребуется 9 сделок для возмещения 50% проигрыша.

В чем здесь дело? Не потому ли все это происходит, что система В имеет про­цент выигрышных сделок выше? Истинная причина, по которой В функциони­рует лучше А, кроется в разбросе результатов и его влиянии на функцию роста. Большинство трейдеров ошибочно считают, что функция роста TWR задается следующим образом:

где R = процентная ставка за период (например, 7% = 0,07);

N = количество периодов.

Так как 1 + R то же, что и HPR, большинство ошибочно полагает, что функция роста[3] TWR равна:

(1.18) TWR = HPR ^N


Эта функция верна только тогда, когда прибыль (то есть HPR) постоянна, чего в торговле не бывает. Реальная функция роста в торговле (или любой другой среде, где HPR не явля­ется постоянной) — это произведение всех HPR. Допустим, мы торгуем кофе, наше оптимальное f составляет 1 контракт на каждую 21 000 долларов на балансе счета и прошло 2 сделки, одна из которых принесла убыток 210 долларов, а другая выигрыш 210 долларов. В этом примере HPR равны 0,99 и 1,01 соответственно. Таким образом, TWR равно:

TWR = 1,01 * 0,99 = 0,9999

Дополнительную информацию можно получить, используя оценочное среднее геометрическое (EGM):

или

Теперь возведем уравнение (1.16а) или (1.166) в степень N, чтобы рассчитать TWR Оно будет близко к «мультипликативной» функции роста, действительному TWR

или

где N = количество периодов;

АНPR = среднее арифметическое HPR;

SD = стандартное отклонение значений HPR;

V = дисперсия значений HPR.

Оба уравнения (1.19) эквивалентны.

Полученная информация говорит, что найден компромисс между увели­чением средней арифметической торговли (HPR) и дисперсией HPR, и ста­новится ясна причина, по которой система (1,9:1 ; 70%) работает лучше, чем система (28:1; 10%)!

Нашей целью является максимизация коэффициента этой функции, т.е. мак­симизация следующей величины:

Показатель оценочного TWR, т.е. N, сам о себе позаботится. Увеличение N не яв­ляется проблемой, так как мы можем расширить количество рынков или торго­вать в более краткосрочных типах систем.

Расчет дисперсии и стандартного отклонения (V и SD соответственно) может оказаться трудным для большинства людей, не знакомых со статистикой. Вместо этих величин многие используют среднее абсолютное отклонение, которое мы на­зовем М. Чтобы найти М, надо просто взять среднее абсолютное значение разно­сти самой величины и ее среднего значения.

При колоколообразном распределении (как почти всегда бывает с распределени­ем прибылей и убытков торговой системы) среднее абсолютное отклонение при­мерно равно 0,8 стандартного отклонения (в нормальном распределении оно со­ставляет 0,7979). Поэтому мы можем сказать:

и

Обозначим среднее арифметическое HPR переменной А, а среднее геометричес­кое HPR переменной G. Используя уравнение (1.166), мы можем выразить оце­ночное среднее геометрическое следующим образом:

Из этого уравнения получим:

Теперь вместо дисперсии подставим стандартное отклонение [как в (1.16а)]:

Из этого уравнения мы можем выделить каждую переменную, а также выде­лить ноль, чтобы получить фундаментальные соотношения между средним арифметическим, средним геометрическим и разбросом, выраженным здесь как SD ^ 2:

В этих уравнениях значение SD^2 можно записать как V или как (1,25 * М) ^2. Это подводит нас к той точке, когда мы можем описать существующие взаимо­связи. Отметьте, что последнее из уравнений — это теорема Пифагора: сумма квад­ратов катетов равна квадрату гипотенузы! Но здесь гипотенуза это А, а мы хотим максимизировать одну из ее сторон, G. При увеличении G любое повышение D («катет» дисперсии, равный SD или V^(1/2), или 1,25 * М) приведет к увеличению А. Когда D равно нулю, тогда А равно G, этим самым соответствуя ложно толкуе­мой функции роста TWR = (1 + R)^ N. Действительно, когда D равно нулю, тогда А равно G в соответствии с уравнением (1.26).

Мы можем сказать, что повышение А^ 2 оказывает на G то же воздей­ствие, что и аналогичное понижение величины (1,25 * М) ^ 2.

Мы можем сказать, что повышение А^ 2 оказывает на G то же воздей­ствие, что и аналогичное понижение величины (1,25 * М) ^ 2.

Чтобы понять это, рассмотрим изменение А от 1,1 до 1,2:

А SD М G А^2 SD ^ 2 = (1, 25 * М)^ 2 1,1 0,1 0,08 1,095445 1,21 0,01 1,2 0,4899 0,39192 1,095445 1.44 0.24 0,23 = 0,23

Когда A=l,l,ToSD=0,l. Когда А = 1,2, то, чтобы получить эквивалентное G, SD должно быть равно 0,4899, согласно уравнению (1.27). Так как М = = 0,8 * SD,ToM=0,3919. Если мы возведем в квадрат значения А и SD и рассчитаем раз­ность, то получим 0,23 в соответствии с уравнением (1.29). Рассмотрим следующую таблицу:

А SD М G А^2 SD ^ 2 = (1,25 * М) ^ 2 1,1 0,25 0,2 1,071214 1, 21 0,0625 1,2 0,5408 0,4327 1,071214 1, 44 0.2925 0, 23 = 0,23

Отметьте, что в предыдущем примере, где мы начали с меньших значений разбро­са (SD или М), требовалось их большее повышение, чтобы достичь того же G. Таким образом, можно утверждать, что чем сильнее вы уменьшаете дисперсию, тем легче дается больший выигрыш. Это экспоненциальная функция, причем в пределе, при ну­левой дисперсии, G равно А. Трейдер, который торгует на фиксированной долевой ос­нове, должен максимизировать G, но не обязательно А. При максимизации G надо понимать, что стандартное отклонение SD затрагивает G в той же степени, что и А в соответствии с теоремой Пифагора! Таким образом, когда трейдер уменьшает стан­дартное отклонение (SD) своих сделок, это эквивалентно повышению арифметичес­кого среднего HPR (т.е. А), и наоборот!

Фундаментальное уравнение торговли

Мы можем получить гораздо больше, чем просто понимание того факта, что уменьшение размера проигрышей улучшает конечный результат. Вернемся к уравнению (1.19а):

Подставим А вместо AHPR (среднее арифметическое HPR). Далее, так как (X ^Y) ^ Z = Х ^ (Y * Z), мы можем еще больше упростить уравнение:

Это последнее уравнение мы назовем фундаментальным уравнением торговли, так как оно описывает, как различные факторы: А, SD и N — влияют на ре­зультат торговли. Очевидны несколько фактов. Во-первых, если А меньше или равно единице, тогда при любых значениях двух других переменных, SD и N, наш результат не может быть больше единицы. Если А меньше единицы, то при N, стремящемся к бесконечности, наш результат приближается к нулю. Это означает, что, если А меньше или равно 1 (математическое ожидание меньше или равно нулю, так как математическое ожидание равно А - 1), у нас нет шансов получить прибыль. Фак­тически, если А меньше 1, то наше разорение — это просто вопрос времени (то есть достаточно большого N).

При условии, что А больше 1, сростом N увеличивается наша прибыль. На­пример, система показала среднее арифметическое 1,1 и стандартное отклоне­ние 0,25. Таким образом:

В нашем примере, где коэффициент равен 1,1475; 1,1475 ^ (1/2) = 1,071214264. Таким образом, каждая следующая сделка, каждое увеличение N на единицу

соответствует умножению нашего конечного счета на 1,071214264. Отметьте, что это число является средним геометрическим. Каждый раз, когда осуществляется сдел­ка и когда N увеличивается на единицу, коэффициент умножается на среднее гео­метрическое. В этом и состоит действительная польза диверсификации, выражен­ная математически фундаментальным уравнением торговли. Диверсификация по­зволяет вам как бы увеличить N (т.е. количество сделок) за определенный период времени. Есть еще одна важная деталь, которую необходимо отметить при рассмот­рении фундаментального уравнения торговли: хорошо, когда вы уменьшаете стандартное отклонение больше, чем арифметическое среднее HPR. Поэтому следует быстро закрывать убыточные позиции (использовать маленький stop-loss). Но уравнение также демонстрирует, что при выборе слишком жесткого стопа вы можете больше потерять. Вас выбьет с рынка из-за слишком большо­го количества сделок с маленьким проигрышем, которые позднее оказались бы прибыльными, поскольку А уменьшается в большей степени, чем SD. Вместе с тем, и уменьшение больших выигрышных сделок поможет ва­шей системе, если это уменьшает SD больше, чем уменьшает А. Во многих случаях этого можно достичь путем включения в вашу торговую программу опционов. Позиция по опционам, которая направлена против позиции базо­вого инструмента (покупка опциона или продажа соответствующего опцио­на), может оказаться весьма полезной. Например, если у вас длинная пози­ция по какой-либо акции (или товару), покупка пут-опциона (или продажа колл-опциона) может уменьшить ваше SD по совокупной позиции в боль­шей степени, чем уменьшить А. Если вы получаете прибыль по базовому инстру­менту, то будете в убытке по опциону. При этом убыток опциону лишь незначи­тельно уменьшит общую прибыль. Таким образом, вы уменьшили как ваше SD, так и А. Если вы не получаете прибыль по базовому инструменту, вам надо увели­чить А и уменьшить SD. Надо стремиться уменьшить SD в большей степени, чем уменьшить А.

Конечно, издержки на трансакции при такой стратегии довольно значи­тельны, и они всегда должны приниматься в расчет. Чтобы воспользоваться такой стратегией, ваша программа не должна быть ориентирована на очень короткий срок. Все вышесказанное лишь подтверждает, что различные стра­тегии и различные торговые правила должны рассматриваться сточки зре­ния фундаментального уравнения торговли. Таким образом, мы можем оце­нить влияние этих факторов на уровень возможных убытков и понять, что именно необходимо сделать для улучшения системы.

Допустим, в долгосрочной торговой программе была использована выше­упомянутая стратегия покупки пут-опциона совместно с длинной позицией по базовому инструменту, в результате мы получили большее оценочное TWR. Ситуа­ция, когда одновременно открыты длинная позиция по базовому инструменту и по­зиция по пут-опциону, эквивалентна просто длинной позиции по колл-опциону. В том случае лучше просто купить колл-опцион, так как издержки на трансакции будут существенно ниже[4], чем при наличии длинной позиции по базовому инструмен­ту и длинной позиции по пут-опциону. Продемонстрируем это на примере рынка индексов акций в 1987 году. Допустим, мы покупаем базовый инструмент — индекс ОЕХ. Система, кото­рую мы будем использовать, является простым 20-дневным прорывом кана­ла. Каждый день мы рассчитываем самый высокий максимум и самый низ­кий минимум последних 20 дней. Затем, в течение дня, если рынок повыша­ется и касается верхней точки, мы покупаем. Если цены идут вниз и касаются низшей точки, мы продаем. Если дневные открытия выше или ниже точек входа в рынок, мы входим при открытии. Такая система подразумевает по­стоянную торговлю на рынке:


Дата Позиция Вход P&L Полный капитал Волатильность 870106 Длинная 241,07 0 0 0,1516987 870414 Короткая 276,54 35,47 35,47 0,2082573 870507 Длинная 292,28 -15,74 19,73 0,2182117 870904 Короткая 313,47 21,19 40,92 0,1793583 871001 Длинная 320,67 -7,2 33,72 0,1848783 871012 Короткая 302,81 -17,86 15,86 0,2076074 871221 Длинная 242,94 59,87 75,73 0,3492674

Если определять оптимальное f no этому потоку сделок, мы найдем, что соот­ветствующее среднее геометрическое (фактор роста на нашем счете за игру) равно 1,12445.

Теперь мы возьмем те же сделки, только будем использовать модель оценки фондовых опционов Блэка-Шоулса (подробно об этом будет рассказано в главе 5), и преобразуем входные цены в теоретические цены опционов. Входные данные для ценовой модели будут следующими: историческая волатильность, рассчитанная на основе 20 дней (расчет исторической волатильности также приводится в главе 5), безрисковая ставка 6% и 260,8875 дней (это среднее число ра­бочих дней в году). Далее мы допустим, что покупаем опционы, когда остается ровно 0,5 года до даты их исполнения (6 месяцев), и что они «при деньгах». Дру­гими словами, существуют цены исполнения, в точности соответствующие цене входа на рынок. Покупка колл-опциона, когда система в длинной позиции по ба­зовому инструменту, и пут-опциона, когда система в короткой позиции по базо­вому инструменту, с учетом параметров упомянутой модели оценки опционов, даст в результате следующий поток сделок:

Назад Дальше