Рис. 13.2. Движимый бомбами космический корабль Фримана Дайсона [Dyson 1968]
Лазерный луч и световой парус
В 1962 году Роберт Форвард, еще один весьма уважаемый мною физик, написал для научно-популярного журнала статью о космолете с парусом, который приводится в движение выпущенным издалека сфокусированным лазерным лучом [Forward 1962]. В академической статье 1984 года он развил и уточнил эту концепцию (рис. 13.3).
Рис. 13.3. Механизм передвижения с помощью лазерного луча и светового паруса Роберта Форварда [Forward 1984]
Лазерный массив, работающий на солнечной энергии и расположенный в космосе или на Луне, генерирует лазерный луч мощностью в 7,2 тераватта (за год потребляющий примерно вдвое больше, чем общее потребление электричества в США за 2014 год!). С помощью линзы Френеля диаметром в 1000 километров этот луч фокусируется на парусе диаметром в 100 километров и весом в 1000 тонн, который закреплен на более легком космолете. (Необходимая точность направления луча – до миллионных долей секунды дуги.) Световое давление луча толкает парус и космолет, к половине 40-летнего путешествия до проксимы Центавра разгоняя его примерно до одной четверти от скорости света. Затем, в течение второй половины пути, космолет использует модификацию того же механизма, чтобы замедлиться, и в итоге его скорость оказывается достаточно мала, чтобы совершить посадку на планету (можете придумать, как должно происходить торможение?[51]).
Форвард, как и Дайсон, считал, что реализовать предложенный им способ передвижения можно будет в XXII веке. Я, глядя на связанные с этим технические сложности, думаю, что времени понадобится больше.
Гравитационные пращи у двойной черной дыры
Третий способ – это моя собственная сумасбродная – крайне сумасбродная! – вариация одной из идей Дайсона [Dyson 1963].
Представьте, что вы решили за несколько лет облететь изрядную часть Вселенной, совершив не просто межзвездное, а межгалактическое путешествие с околосветовой скоростью. Вы можете это сделать с помощью пары черных дыр, вращающихся одна вокруг другой (так называемая двойная черная дыра). У этих дыр должны быть сильно вытянутые эллиптические орбиты, причем достаточно большие, чтобы приливные силы не уничтожили ваш звездолет. Используя химическое или ядерное топливо, вы выводите корабль на орбиту вблизи одной из черных дыр – орбиту раскручивания (рис. 13.4). Корабль приближается к дыре, делает вокруг нее несколько оборотов, а затем в момент, когда дыра движется практически прямо в направлении дыры-спутника, корабль перелетает ко второй дыре и начинает кружиться вокруг нее. Если черные дыры все еще движутся навстречу друг другу (а это продолжается недолго), вы перелетаете обратно к первой дыре. Если же нет, кружение продолжается; нужно оставаться на орбите вокруг второй дыры до тех пор, пока дыры не начнут снова двигаться навстречу друг другу, и лишь тогда отправиться к первой дыре. Таким образом, перелетая от дыры к дыре только в моменты их встречного движения, корабль набирает все большую и большую скорость, которая приближается к скорости света настолько, насколько это вам угодно (при условии достаточно вытянутых орбит двойной дыры).
Рис. 13.4. Звездолет разгоняется до околосветовой скорости
Чтобы контролировать время кружения около каждой из дыр, вам, что примечательно, понадобится лишь небольшое количество ракетного топлива. Главное – выйти на критическую орбиту вокруг дыры и затем начать кружение. О критической орбите я расскажу в главе 27, а пока достаточно отметить, что эта орбита крайне нестабильна. Это напоминает кружение на мотоцикле по гладкой кромке вулканического кратера. Если вы чутко держите равновесие, на кромке можно оставаться сколь угодно долго, но если вы решите съехать с накатанной, достаточно малейшего отклонения руля, чтобы мотоцикл понесся прочь от кратера. Точно так же, если вы решите покинуть критическую орбиту, малейшее усиление ракетной тяги позволит центробежным силам взять верх и отбросить корабль прочь, к другой черной дыре.
Когда скорость звездолета достаточно приблизится к световой, вы можете сойти с критической орбиты и устремиться к далекой галактике, которую выбрали пунктом назначения.
Рис. 13.5. Старт с критической орбиты к далекой-далекой галактике
Путешествие может быть далеким, до 10 миллиардов световых лет. Но когда вы движетесь с околосветовой скоростью, время для вас течет гораздо медленнее, чем на Земле. Если скорость достаточно близка к световой, вы сможете добраться до своей цели за несколько лет, а то и меньше (по вашему персональному времени), а приближаясь к цели, притормозить с помощью другой двойной черной дыры, если вы ее там найдете!
Рис. 13.6. Торможение с помощью гравитационной пращи у двойной черной дыры, находящейся в галактике назначения
Вернуться домой можно тем же способом, правда, возвращение может оказаться не слишком радостным: в вашей галактике пройдут миллиарды лет, хотя вы-то постареете лишь на несколько лет. Представляете, что вы там обнаружите?
Использование подобных гравитационных пращей дает цивилизации возможность широко распространиться по межгалактическому пространству. Главная (и, возможно, непреодолимая) сложность при этом – поиск или создание подходящих двойных черных дыр. Найти двойную дыру для стартового разгона, быть может, получится без проблем (если цивилизация достаточно высокоразвитая), но двойная дыра для финишного торможения – совсем другое дело.
Что с вами будет, если не найдется подходящей двойной черной дыры для торможения или если вы пролетите мимо нее из-за недостаточно точной наводки? Дополнительные сложности обусловлены здесь расширением Вселенной[52]. Подумайте об этом.
Какими бы привлекательными ни казались все эти технологии будущего, слово «будущее» здесь ключевое. С технологиями XXI века мы неспособны достичь других звездных систем быстрее, чем за тысячи лет пути. Наша единственная, призрачная надежда на межзвездный перелет – это червоточина, как в «Интерстеллар», или еще какая-нибудь предельная форма искривления пространства – времени.
IV. Червоточина
14. Червоточины
Откуда взялось название «червоточина»
Название астрофизическим червоточинам придумал мой научный руководитель Джон Уилер. Он использовал сравнение с червоточинами в яблоках (рис. 14.1). Для муравья, который ползает по яблоку, поверхность яблока – это целая вселенная. Если плод насквозь проеден червем, муравей может попасть с верхней части яблока на нижнюю двумя способами: проползти снаружи (через свою вселенную) или спустившись по червоточине. Путь через червоточину короче, это способ срезать дорогу, быстрее попав с одной стороны муравьиной вселенной на другую.
Рис. 14.1. Муравей исследует яблоко с червоточиной
Аппетитная мякоть яблока, через которую проходит червоточина, не относится к муравьиной вселенной. Это трехмерный балк, или гиперпространство (см. главу 4). С одной стороны, стенки червоточины можно считать частью муравьиной вселенной – их поверхности имеют одну и ту же мерность (два измерения) и смыкаются со вселенной (с поверхностью яблока) на входе в червоточину. Но с другой – стенки червоточины не принадлежат муравьиной вселенной, это просто короткий путь через балк, по которому муравей может попасть из одной точки своей вселенной в другую.
Червоточина Фламма
В 1916 году, всего через год после того, как Эйнштейн сформулировал законы общей теории относительности, Людвиг Фламм из Вены нашел решение уравнений Эйнштейна, которое описывает червоточину (хоть Фламм ее так и не называл). Сейчас мы знаем, что уравнения Эйнштейна допускают существование червоточин разной формы и разных свойств, но червоточина Фламма – единственная из них в точности сферическая и не содержащая гравитирующей материи[53]. Если мы сделаем экваториальный срез червоточины Фламма, так чтобы и она, и наша Вселенная (наша брана) имели два измерения вместо трех, а затем посмотрим на нашу Вселенную и на червоточину из балка, то они будут выглядеть как показано на левой части рис. 14.2.
Рис. 14.2. Червоточина Фламма
Поскольку одно из измерений нашей Вселенной на этом рисунке отсутствует, вам следует думать о себе как о двумерном существе, перемещения которого ограничены поверхностью изогнутого «листа» или двумерных стенок червоточины. Есть два способа попасть из пункта A нашей Вселенной в пункт B: короткий путь (синий пунктир) по стенке червоточины и длинный путь (красный пунктир) по поверхности «листа» нашей Вселенной.
Разумеется, пространство нашей Вселенной трехмерно, а не двумерно. И концентрические окружности на левой части рис. 14.2 – это на самом деле вложенные одна в другую зеленые сферы, показанные на правой части рисунка. Войдя в червоточину и двигаясь по идущему от точки А синему пунктиру, вы будете проходить через сферы всё меньшего и меньшего размера. Затем сферы, хоть они и вложены одна в другую, перестанут менять размер. А потом, по мере того как вы будете выбираться из червоточины, приближаясь к точке B, величина сфер начнет расти.
В течение девятнадцати лет физики почти не обращали внимания на экстравагантный вывод из уравнений Эйнштейна, предложенный Фламмом, – на его червоточину. Затем в 1935 году сам Эйнштейн и его коллега, физик Натан Розен, не зная о работах Фламма, самостоятельно пришли к тому же выводу, в подробностях исследовали его и принялись размышлять о его значимости для реального мира. Другие физики, также не зная о решении Фламма, стали называть его червоточину мостом Эйнштейна – Розена.
Схлопывание червоточины
Зачастую из уравнений эйнштейновской теории сложно понять, что, собственно, из них следует. Червоточина Фламма – хороший тому пример. С 1916 до 1962 года, почти полвека, физики считали, что червоточины статичны, никогда не меняются. Затем Джон Уилер и его студент Роберт Фуллер выяснили, что это не так. Пристально изучив уравнения, они обнаружили, что червоточины рождаются, расширяются и умирают, как показано на рис. 14.3.
Рис. 14.3. Динамика червоточины Фламма (моста Эйнштейна – Розена) (Рисунок Мэтта Зимета по моему наброску; из книги [Торн 2009].)
Сначала (а) в нашей Вселенной есть две сингулярности. Со временем сингулярности сближаются через балк и, встретившись, образуют червоточину (b). Червоточина расширяется (c, d), а потом сжимается (e) до тех пор, пока не схлопнется, разделившись на две сингулярности (f). Рождение, расширение, сжатие и схлопывание происходят очень быстро, и ничто – даже свет – не успевает проникнуть по червоточине с одной стороны на другую.
Такой ход событий неизбежен. Если бы во Вселенной когда-либо, каким-либо образом возникла сферическая червоточина, не содержащая гравитирующей материи, она, согласно законам теории относительности, вела бы себя именно так.
Уилер не испугался этих выводов. Напротив, он был доволен, поскольку считал сингулярности (места, где пространство – время искажается бесконечно) «кризисом законов физики». А кризисы многому учат: внимательно их исследуя, можно узнать много ценного.
«Контакт»
Перенесемся на четверть века вперед. В мае 1985 года мне позвонил Карл Саган и попросил дать отзыв о его готовящемся к выходу в печать романе «Контакт»[54] в плане соблюдения законов теории относительности. Я с радостью согласился (мы с Карлом близкие друзья, само задание казалось интересным, и к тому же я чувствовал себя обязанным за то, что он познакомил меня с Линдой Обст).
Карл прислал мне рукопись, я прочитал ее, и мне очень понравилось. Но обнаружилась одна проблема: он отправил свою героиню, доктора Элинор Эрроуэй, из Солнечной системы к звезде Вега через черную дыру. Я знал, что недра черной дыры не могут стать дорогой к Веге, как и к любому другому пункту в нашей Вселенной. Проникнув за горизонт черной дыры, доктор Эрроуэй погибла бы – ее бы убила сингулярность. Чтобы быстро добраться до Веги, требовалась червоточина, а не черная дыра. Но это должна была быть червоточина, которая не схлопывается; проходимая червоточина.
Поэтому я спросил себя: что я должен сделать с червоточиной Фламма, чтобы она не схлопывалась, а оставалась открытой и через нее можно было пройти? Ответ подсказал мне несложный мысленный эксперимент. Положим, у нас есть червоточина – сферическая, как червоточина Фламма, но при этом не схлопывающаяся. Пошлем туда, в радиальном направлении, пучок света. Поскольку все лучи света в пучке направлены радиально, форма этого пучка будет такой, как на рис. 14.4. Он сходится (сужается в поперечнике) при входе в червоточину и расходится (расширяется в поперечнике) при выходе из нее. На выходе червоточина рассеивает лучи, словно линза.
Рис. 14.4. Путь радиального пучка света через проходимую сферическую червоточину. Слева: вид из балка, одно пространственное измерение опущено. Справа: вид из нашей Вселенной (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)
Гравитирующие тела, вроде Солнца или черной дыры, сводят лучи (рис. 14.5). Они не могут разводить лучи, поскольку для этого тело должно обладать отрицательной массой (или отрицательной энергией; вспомните, что, по Эйнштейну, масса и энергия эквивалентны). Исходя из этого я сделал вывод, что любая проходимая сферическая червоточина должна быть пронизана неким веществом, которое обладает отрицательной энергией. Как минимум энергия этого вещества должна быть отрицательной относительно пучка света или чего угодно еще, что путешествует сквозь червоточину с околосветовой скоростью[55]. Я называю такое вещество «экзотической материей». (Позже я выяснил, что, согласно законам теории относительности, экзотической материей должна быть пронизана любая червоточина, сферическая или нет. Это следует из теоремы, которую в 1975 году доказал Дэннис Гэннон из Калифорнийского университета в Дэвисе и о которой я, увы, не знал.)
Рис. 14.5. Солнце (или черная дыра) сводит лучи света
Поразительно, что экзотическая материя – благодаря странностям законов квантовой физики – может существовать в действительности. Небольшие ее количества даже можно получить в лабораторных условиях, между двух близко расположенных электропроводящих пластин. Это называется эффектом Казимира. Однако в 1985 году мне было совершенно непонятно, может ли червоточина содержать достаточно экзотической материи, чтобы оставаться открытой. Поэтому я сделал две вещи.
Во-первых, я написал Карлу письмо, где предложил отправить Элинор Эрроуэй на Вегу с помощью червоточины, а не черной дыры. К письму я приложил копию вычислений, показывающих, что эта червоточина должна быть пронизана экзотической материей. Карл принял мое предложение (и упомянул о моих расчетах в «Благодарностях» к роману). Так червоточины и проникли в современную научную фантастику – в книги, фильмы и на телевидение.
Во-вторых, я в соавторстве со своими студентами, Марком Моррисом и Улви Яртсевером, опубликовал пару научных статей о проходимых червоточинах. В этих статьях мы предложили нашим коллегам выяснить, допускают ли квантовые и релятивистские законы возможность (для высокоразвитой цивилизации) поместить в червоточину достаточно экзотической материи, чтобы червоточина оставалась открытой. Это дало толчок для всевозможных исследований многих физиков, однако и сегодня, почти тридцать лет спустя, ответ все еще не найден. Многое указывает на то, что ответ отрицательный и проходимых червоточин не может быть. Но мы все еще далеки от окончательного решения. Подробнее об этом рассказано в книге Аллена Эверетта и Томаса Романа «Путешествия во времени и варп-двигатели» [Everett, Roman 2012].
Как выглядит проходимая червоточина
Как выглядит проходимая червоточина для нас с вами, для людей этой Вселенной? Я не могу ответить наверняка. Если червоточину возможно удерживать открытой, точный способ это сделать остается загадкой, поэтому про форму червоточины ничего определенного не скажешь. Другое дело черная дыра. Ее свойства описал Рой Керр, поэтому я и могу сказать о ее виде что-то конкретное (см. главу 8).
Что же касается червоточин, я могу лишь строить обоснованные предположения. Поэтому в заголовке этого параграфа стоит значок .
Представьте, что здесь, у нас, на Земле, есть червоточина, которая тянется через балк от Графтон-стрит в Дублине, Ирландия, до пустыни в Южной Калифорнии. Длина пути через червоточину может составить несколько метров.