Интерстеллар: наука за кадром - Кип Торн 20 стр.


Однако, подозревает (в Кип-версии) профессор, поля балка способны не только на это. Еще они могут управлять силой гравитации, порождаемой другими объектами нашей браны, будь то камень или планета.

Поля балка управляют силой гравитации

Гравитацией каждой частицы вещества в нашей бране управляет (с высокой точностью) ньютоновский закон обратных квадратов (см. главу 2 и главу 23). Гравитационное притяжение выражается формулой g = Gm/r2, где r – это расстояние от частицы вещества, m – масса этой частицы, а G – гравитационная постоянная, входящая в формулу всемирного тяготения.

Теория относительности Эйнштейна еще более точно описывает законы гравитации, и сила гравитации, а также сила всех искривлений пространства и времени, порожденных веществом, здесь тоже пропорциональна G.

Если балка нет и есть только наша четырехмерная Вселенная, законы Эйнштейна утверждают, что G – абсолютная постоянная, она одинакова в любой точке пространства и не меняется со временем.

Но если балк существует, законы теории относительности допускают изменение G. Возможно, рассуждает профессор, поля балка способны ее изменять. Вероятно, так и происходит, думает он. Это наилучшее объяснение одной из наблюдаемых в Кип-версии аномалий (рис. 25.4).

Рис. 25.4. Карты гравитационного притяжения Земли. Сверху: в 2014 году, по данным спутника GOCE. Снизу: после внезапного изменения в эпоху аномалий

Сила гравитационного притяжения Земли немного меняется от места к месту, поскольку отличающиеся друг от друга по плотности горные породы, залежи нефти, водные массивы и т. д. распределены по планете неравномерно. Различия в гравитации отображаются на карте с помощью орбитальных спутников. Самая точная на 2014 год карта составлена спутником GOCE[77] Европейского космического агентства (рис. 25.4 сверху). По ней видно, что на 2014 год слабее всего земная гравитация на юге Индии (синее пятно), а сильнее всего – в Исландии и Индонезии (красные пятна).

В Кип-версии карта практически не менялась, пока не начали появляться аномалии. А затем весьма резко гравитационное притяжение Земли ослабело в Северной Америке и усилилось в Южной Африке (рис. 25.4 снизу).

Профессор Брэнд пытался объяснить это изменением приливных сил под влиянием полей балка, но испытывал затруднения. Лучшим объяснением, что он мог найти, было увеличение гравитационной постоянной G в недрах Земли под Южной Африкой и ее уменьшение в недрах под Северной Америкой. Видимо, эти изменения породило некое поле балка, проходящее через нашу брану и влияющее на G, решил профессор.

Поля балка – это не только ключ к гравитационным аномалиям на Земле, считает профессор Брэнд (в Кип-версии). Эти поля играют также две другие важные роли – они удерживают червоточину открытой и защищают нашу Вселенную от разрушения.

Как не дать червоточине схлопнуться

Если предоставить червоточину, которая соединяет Солнечную систему с окрестностями Гаргантюа, самой себе, она схлопнется (рис. 25.5). Наша связь с Гаргантюа будет прервана. Это однозначно следует из законов теории относительности Эйнштейна (см. главу 14).

Рис. 25.5. Червоточины. Сверху: схлопывающаяся. Снизу: удерживаемая в открытом состоянии полями балка

Если исключить балк, единственный способ удерживать червоточину открытой – это пронизать ее экзотической материей со свойством гравитационного отталкивания (см. главу 14). Темная энергия, которая (вероятно) убыстряет расширение Вселенной (см. главу 24), скорее всего, не обладает достаточным для наших целей гравитационным отталкиванием. Причем на 2014 год представляется вероятным, что законы квантовой физики не позволят даже чрезвычайно развитой цивилизации когда-либо собрать столько экзотической материи, чтобы удерживать червоточину открытой. И я подозреваю, что в эпоху профессора Брэнда ученые лишь еще больше утвердятся в этой мысли.

Но, понимает профессор (в Кип-экстраполяции), есть альтернатива: удерживать червоточину от схлопывания могут поля балка. А поскольку профессор считает, что червоточину создали и поместили возле Сатурна сущности из этого самого балка, ему эта версия кажется перспективной.

Как спасти Вселенную

Чтобы гравитация в нашей Вселенной с высокой точностью подчинялась ньютоновскому закону обратных квадратов, наша брана должна быть заключена между двух ограничительных бран с AdS-слоем между ними (см. главу 23). Однако ограничительные браны находятся под давлением[78] и подвержены короблению, словно игральные карты, зажатые между пальцев (рис. 23.8). Согласно теории относительности, все будет именно так, а не иначе.

Если этому короблению ничего не препятствует, произойдет столкновение ограничительных бран с нашей браной – с нашей Вселенной (рис. 25.6)[79]. И Вселенная неизбежно погибнет!

Рис. 25.6. Столкновение бран

Очевидно, что наша Вселенная не разрушилась, отмечает профессор в Кип-экстраполяции. Значит, что-то должно предохранять ограничительные браны от коробления. Единственное, что, по мнению профессора, подходит для этого, – поля балка. Как только ограничительная брана начинает прогибаться, поля балка должны каким-то образом на нее воздействовать, возвращая ей прямизну.

И наконец, уравнение профессора!

Законы физики описываются языком математики. Еще до того, как Купер встретил профессора Брэнда (в Кип-версии), профессор пытался составить математическое описание полей балка и их проявлений – того, как они порождают аномалии, как изменяют гравитационную постоянную G в нашей Вселенной, как удерживают червоточину открытой и как защищают нашу брану от столкновений.

Составляя это описание, профессор руководствовался данными наблюдений, собранных его командой, и эйнштейновскими законами физики, расширенными на пятое измерение.

Профессор выразил все свои идеи в одном уравнении, «том самом» уравнении, которое он записал на одной из досок в своем кабинете (рис. 25.7)[80]. Купер видит это уравнение во время первого визита в NASA, и оно все там же десятки лет спустя – когда Мёрф выросла, стала выдающимся физиком и помощницей профессора.

.

Рис. 25.7. Уравнение профессора Брэнда

Для подобных уравнений применяют термин «действие». Есть хорошо известная (физикам) математическая процедура – взять действие и вывести все следующие из него неквантовые физические законы. Из уравнения профессора, в сущности, можно вывести абсолютно все неквантовые законы. Но чтобы это были верные законы – законы, безошибочно описывающие, как возникают аномалии, как червоточина остается открытой, как изменяется G и что защищает Вселенную, – уравнение должно иметь надлежащую математическую форму. Профессор не знает, чтό это за форма. Он пытается угадать. Он делает обоснованные предположения, но это тем не менее лишь предположения.

Его уравнение содержит множество членов (таких, как U(Q), Hij(Q), Wij и M (поля стандартной модели)), значение которых неизвестно (рис. 25.7). Эти члены касаются природы силовых линий полей балка, того, как они влияют на нашу брану и как поля нашей браны влияют на них. (Более подробные разъяснения см. в приложении «Некоторые технические примечания» в конце книги.)

Рис. 25.7. Я записываю варианты значений для членов уравнения на доске профессора

Когда профессор и его сотрудники говорят «решить уравнение», в Кип-версии они имеют в виду две вещи. Во-первых, выяснить значения всех этих U(Q), Hij(Q), Wij и M. Во-вторых, вывести из уравнения все необходимые сведения о нашей Вселенной, об аномалиях и, что особенно важно, о том, как управлять аномалиями, чтобы эвакуировать людей с Земли.

Когда персонажи фильма говорят «решить гравитацию», они подразумевают то же самое.

Ближе к концу фильма мы видим, как постаревший профессор и повзрослевшая Мёрф пытаются решить его уравнение перебором вариантов. На досках перед ними – перечень возможных значений для неизвестных величин (я записал там эти значения прямо перед началом съемок, рис. 25.7 и 25.8). Затем, в Кип-версии, Мёрф вводит каждый из вариантов в сложную компьютерную программу, написанную специально ради этого. Программа, пользуясь введенным значением, показывает, какие законы следуют в этом случае из формулы профессора, а также как при этом должны себя вести гравитационные аномалии.

Рис. 25.8. Мёрф изучает перечень вариантов (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)

В Кип-версии ни одна из попыток не дает поведения аномалий, хотя бы немного похожего на наблюдаемые. Однако в фильме профессор и Мёрф упорно продолжают действовать методом перебора: берут вариант, смотрят на результат, отметают вариант, переходят к следующему и т. д., пока не выбьются из сил. И на следующий день – то же самое.

Немного позже в фильме профессор, лежа на смертном одре, признается Мёрф: «Я лгал, Мёрф. Я обманывал тебя». Пронзительная сцена. Мёрф открывается правда: профессор знал, что с его уравнением что-то не в порядке, знал с самого начала. И столь же пронзительная сцена происходит на планете Манн – разговор доктора Манна с дочерью профессора.

Однако на самом деле, понимает Мёрф вскоре после смерти профессора, «его решение было верным. Он давно его нашел. Но это половина ответа». Другую половину можно найти внутри черной дыры. В ее сингулярности.

26. Сингулярности и квантовая гравитация

В «Интерстеллар» Купер и ТАРС ищут внутри Гаргантюа квантовые данные – данные, которые помогли бы профессору решить его уравнение и эвакуировать человечество с Земли. Они считают, что эти данные должны быть в сингулярности, которая находится внутри Гаргантюа – в «мягкой сингулярности», как выражается Ромилли. Что же такое квантовые данные? Чем они способны помочь профессору? И что такое мягкая сингулярность?

Приоритет квантовых законов

Наша Вселенная в основе своей квантовая. Под этим я имею в виду, что всё в ней флуктуирует, то есть случайным образом колеблется. Хотя бы чуть-чуть, но абсолютно всё!

Когда мы используем высокоточные инструменты для изучения крохотных объектов, мы видим сильные флуктуации. Положение электрона в атоме флуктуирует так быстро и так беспорядочно, что мы не можем знать, где находится электрон в тот или иной момент. И флуктуации электрона ограничиваются лишь размерами атома. Поэтому законы квантовой физики имеют дело не с конкретным положением электрона, а с вероятностями его положения (рис. 26.1).

Рис. 26.1. Плотность вероятности местонахождения электрона для двух разных атомов водорода. Вероятность велика для белых областей, меньше для красных и очень мала для черных. (3, 0, 0) и (3, 2, 0) – наборы квантовых чисел, характеризующие эти состояния электрона

Наблюдая с помощью высокоточных инструментов за большими объектами, мы тоже видим флуктуации. Но флуктуации больших объектов крайне малы. В детекторах гравитационных волн ЛИГО (см. главу 16) положения 40-килограммовых зеркал[81] определяются с помощью лазерных лучей. Положения зеркал флуктуируют, но величина этих флуктуаций намного – в десять миллиардов раз! – меньше размеров атома (рис. 26.2). Тем не менее лазерные лучи ЛИГО уже в течение нескольких лет отслеживают эти флуктуации. (Конструкция ЛИГО, однако, не позволяет флуктуациям мешать измерению гравитационных волн. Мы с моими учениками успели это доказать.)

Рис. 26.2. 40-килограммовое зеркало, подготовленное для установки в ЛИГО. Его положение квантовомеханически флуктуирует – очень-очень слабо, на одну десятимиллиардную от диаметра атома

Поскольку объектам человеческих и больших масштабов присущи лишь крохотные квантовые флуктуации, физики зачастую их не учитывают. Игнорирование флуктуаций сильно облегчает формулы и упрощает расчеты.

Если мы возьмем обычные квантовые законы, не учитывающие гравитацию, а затем отбросим флуктуации, мы получим законы ньютоновской физики – законы, которые в течение нескольких последних столетий использовались для описания планет, звезд, мостов и бильярдных шаров (см. главу 3).

Если же взять законы квантовой гравитации (о которых мы знаем пока немного) и пренебречь флуктуациями, то должны получиться законы теории относительности (которые изучены куда лучше). Флуктуации, которыми мы пренебрежем, – это, например, пена из крохотных флуктуирующих червоточин («квантовая пена», которой пронизано все пространство; см. рис. 26.3 и главу 14)[82]. Без учета флуктуаций законы теории относительности точно описывают искривление пространства и времени вблизи черной дыры и замедление времени на Земле.

Рис. 26.3. Квантовая пена. Есть некоторая вероятность (скажем, 0,4), что пена будет иметь форму а, другая вероятность (скажем, 0,5) – что b, и еще одна (0,1) – что с (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)

Все это время мы вели к главному: если бы профессору Брэнду удалось открыть законы квантовой гравитации и для балка, и для нашей браны, тогда, исключив из этих законов флуктуации, он мог бы найти точную форму своего уравнения (см. главу 25). И узнал бы причину гравитационных аномалий и как ими можно управлять – то есть как можно их использовать для эвакуации человечества с Земли.

Профессор (в Кип-версии) хорошо это понимает. Кроме того, он знает, откуда можно получить законы квантовой гравитации. Из сингулярностей.

Сингулярности: область квантовой гравитации

Источник сингулярности – это место, где искривление пространства и искривление времени возрастают неограниченно, где они становятся бесконечно большими.

Если мы представим, что искривленное пространство нашей Вселенной подобно волнующейся поверхности океана, тогда источник сингулярности похож на верхушку волны, которая вот-вот обрушится вниз, а недра сингулярности подобны бурлению разбившейся волны (рис. 26.4). Гладкая волна – перед тем, как она разобьется, – подчиняется «гладким» законам физики, таким как законы теории относительности Эйнштейна. Бурун требует иных законов – таких, как законы квантовой физики с их квантовой пеной.

Рис. 26.4. Сингулярность как верхушка океанской волны, которая вот-вот обрушится

Сингулярности лежат в сердцевинах черных дыр. Законы теории относительности однозначно говорят нам об этом, хоть они и не могут объяснить, что происходит внутри сингулярностей. Для этого предназначены законы квантовой гравитации.

В 1962 году я перешел из Калтеха (где окончил бакалавриат) в Принстонский университет, чтобы учиться на доктора физических наук. Я выбрал именно Принстон, потому что там преподавал Джон Уилер. Ведь Уилер тогда был флагманом в теории относительности.

Рис. 26.5. Джон Уилер в 1971 году читает лекцию о сингулярностях, черных дырах и Вселенной

Одним сентябрьским днем я с трепетом постучал в дверь кабинета профессора Уилера. Это была моя первая встреча с этим великим человеком. Широко улыбаясь, он приветствовал меня, провел внутрь и сразу же – как будто я был его достославным коллегой, а не полнейшим новичком – начал разговор о тайнах звездных коллапсов. Коллапсов, в результате которых образуются черные дыры с сингулярностями в их сердцевине. В этих сингулярностях, утверждал он, «вершится пылкий брак законов теории относительности с законами квантовой физики». Плоды этого брака, говорил Уилер, законы квантовой гравитации, в сингулярностях расцветают полным цветом. Если бы мы могли разобраться в сингулярностях, мы бы узнали законы квантовой гравитации. Сингулярности – это розеттский камень[83] для расшифровки квантовой гравитации.

После этой персональной лекции я стал новообращенным. И множество других физиков после открытых лекций и статей Уилера встали на путь познания сингулярностей и законов квантовой гравитации. И этот путь до сих пор не пройден. Пока он привел нас к теории суперструн, которая, в свою очередь, привела к утверждению, что наша Вселенная – это брана, находящаяся в многомерном балке (см. главу 21).

Голые сингулярности?

Было бы чудесно, если бы мы могли найти или создать сингулярность вне черной дыры – сингулярность, которая не скрывалась бы за горизонтом событий. Голую сингулярность. Тогда задача профессора Брэнда была бы куда проще. Он мог бы извлечь необходимые квантовые данные из этой голой сингулярности прямо у себя в лаборатории.

В 1991 году мы с Джоном Прескиллом поспорили с нашим другом Стивеном Хокингом о голых сингулярностях. Прескилл – профессор в Калтехе, один из лучших в мире специалистов в области квантовой информации. Стивен – тот самый «парень на кресле-каталке», который успел мелькнуть в «Звездном пути», «Симпсонах» и «Теории Большого взрыва». А еще он один из величайших гениев нашего времени. Мы заключили пари: Джон и я считали, что законы физики допускают существование голых сингулярностей. Стивен утверждал, что нет (рис. 26.6).

Назад Дальше