Интерстеллар: наука за кадром - Кип Торн 23 стр.


Что видит Купер внутри Гаргантюа

Глядя вверх во время своего падения, Купер видит внешнюю Вселенную. Поскольку его падение было ускорено, он видит, как время во внешней Вселенной течет примерно с той же скоростью, что и его собственное[88], и он видит изображение внешней Вселенной уменьшенным[89] – оно занимает не около половины неба, а примерно четверть.

Впервые увидев соответствующие кадры из фильма, я порадовался, что команда Пола Франклина поняла все правильно. Более того, они обратили внимание на то, о чем забыл я: в фильме изображение Вселенной окружено аккреционным диском Гаргантюа (рис. 28.3). Можете объяснить почему?

Рис. 28.3. Внешняя Вселенная, окруженная аккреционным диском, как ее видит Купер из Гаргантюа, глядя вверх вдоль фюзеляжа «Рейнджера». Черная область слева – тень Гаргантюа (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)

Купер видит все, что над ним, но не видит падающей сингулярности, которая опускается за ним со скоростью света, вслед за лучами, которые приносят ему изображение аккреционного диска и внешней Вселенной, но не настигая их.

Поскольку мы весьма невежественны по части внутреннего устройства черных дыр, я сказал Крису и Полу, что изображая то, что Купер видит внизу (то, что приближается к нему по мере его падения), они могут дать волю своей фантазии. Я попросил их лишь об одном: «Пожалуйста, не показывайте внутри черной дыры Сатану и адское пламя, как это было в фильме студии Диснея». В ответ Крис и Пол захихикали. Само собой, у них и в мыслях такого не было.

Когда мне показали, что у них в итоге вышло, я счел их решение весьма разумным. Глядя вниз, Купер видит свет от объектов, которые упали в Гаргантюа раньше него и все еще продолжают падать. Сами объекты не должны для этого испускать свет: Купер видит их, поскольку они отражают свет аккреционного диска – так мы видим Луну, отражающую свет Солнца. Думаю, большая часть этих объектов – межзвездная пыль, чем объясняется то, что Купер видит туман.

Также Купер может догонять объекты, падающие медленнее, чем он сам. Этим можно объяснить белые хлопья, которые ударяются о «Рейнджер» и отлетают от него.

Спасительный тессеракт

В Кип-версии, когда «Рейнджер» приближается к вылетающей сингулярности, он сталкивается с нарастающими приливными силами. В последний момент Купер катапультируется, и приливные силы разрывают «Рейнджер» на части – он разламывается надвое. У края сингулярности Купера поджидает тессеракт, который, видимо, поместили сюда сущности из балка (рис. 28.4).

Рис. 28.4. Купера вот-вот подхватит тессеракт, находящийся у края сингулярности. «Рейнджер» и Купер изображены гораздо больше, чем должны быть; к тому же они двумерны, поскольку одно пространственное измерение на этом рисунке опущено

29. Тессеракт

В «Интерстеллар» издалека тессеракт выглядит как сфера, покрытая узором из светящихся квадратов. Каждый квадрат – это торец стержня. Попав в тессеракт, оцепеневший и дезориентированный Купер падает в шахту между стержнями, то и дело задевая что-то, напоминающее кирпичи, из которых сложены стены шахты, хотя на деле оказывается, что это книги. «Шахта» ведет в большой зал; Купер плавает в нем и постепенно начинает понимать, что к чему.

Этот зал – одна из трехмерных граней четырехмерного тессеракта в уникальной трактовке Кристофера Нолана, с доработками от Пола Франклина и его команды по созданию визуальных эффектов. Зал и окружающее его пространство в высшей степени сложны и необычны. Когда я увидел это впервые, я был сбит с толку не меньше Купера, хоть и знаю, что такое тессеракт. Крис и Пол настолько усложнили тессеракт, что, лишь поговорив с ними, я окончательно разобрался в его структуре.

Вот то, что я знаю и что понял. Я начну с обычного, простого тессеракта, а затем перейду к усложненному тессеракту Криса.

Точка – линия – квадрат – куб – тессеракт

Обычный тессеракт – это гиперкуб, куб в четырех измерениях. С помощью рис. 29.1 и 29.2 я по шагам объясню, что это значит. Если мы возьмем точку (рис. 29.1 сверху) и будем двигать ее в одном измерении, мы получим линию (точнее отрезок). Два конца линии можно представить как две грани шириной в одну точку. Линия обладает одним измерением (вдоль которого она тянется), а у ее «граней» на одно измерение меньше – то есть ноль.

Рис. 29.1. От точки к линии, от линии к квадрату, от квадрата к кубу

Рис. 29.2. От куба к тессеракту

Если мы возьмем линию и будем двигать в перпендикулярном ей измерении (рис. 29.1 посередине), то получим квадрат. У квадрата четыре грани, и это линии. У квадрата два измерения, а у его граней на одно измерение меньше – то есть одно.

Если мы возьмем квадрат и будем двигать в перпендикулярном ему измерении (рис. 29.1 снизу), то получим куб. У куба шесть граней, и это квадраты. У куба три измерения, а у его граней на одно меньше – то есть два.

Следующий шаг нетрудно предугадать, но чтобы его изобразить, мне придется перерисовать куб так, как вы бы его видели, если бы находились прямо перед одной из оранжевых граней (рис. 29.2 сверху). Если теперь перемещать первоначальный (темно-оранжевый) квадрат, чтобы образовался куб, покажется, что квадрат, став ближней гранью куба, увеличился в размере.

Теперь, если мы возьмем куб и будем его двигать в измерении, которое перпендикулярно ему (рис. 29.2 снизу), то получим тессеракт. Изображенный тессеракт похож на два куба, один внутри другого. На картинке внутренний куб расширился наружу, образуя четырехмерный объем тессеракта. У тессеракта восемь граней, и это кубы. Сможете найти все восемь? Тессеракт обладает четырьмя пространственными измерениями, а у его граней на одно измерение меньше – то есть три. У тессеракта и его граней общее временное измерение, не показанное на рисунке.

Зал, где оказывается Купер, – это одна из восьми кубических граней тессеракта – хотя, как я уже говорил, Крис и Пол хитроумно модифицировали его. Перед тем как рассказать о внесенных ими усовершенствованиях, я, чтобы дать свою интерпретацию самых первых сцен в тессеракте, воспользуюсь обычным тессерактом.

Купер путешествует в тессеракте

Поскольку Купер состоит из атомов, которые удерживаются вместе электрическими и ядерными силами и которые могут существовать только в трех пространственных измерениях и одном временном, он вынужден находиться лишь в одной из трехмерных граней тессеракта (в кубе). Купер не может ощутить четвертое пространственное измерение тессеракта. На рис. 29.3 показано, как он плавает внутри одной из граней тессеракта, границы которой я обвел фиолетовыми линиями.

Рис. 29.3. Купер внутри трехмерной грани тессеракта

В Кип-версии тессеракт поднимается из сингулярности в балк. Будучи объектом с тем же количеством пространственных измерений (четыре), он чувствует себя в балке прекрасно. И переносит трехмерного Купера, расположившегося в одной из трехмерных граней, через балк.

Теперь вспомним, что расстояние от Гаргантюа до Земли равно примерно 10 миллиардам световых лет, если измерять его в нашей бране (нашей Вселенной с ее тремя измерениями). Однако если измерить это расстояние в балке, оно составит всего лишь около 1 а. е. (расстояние от Солнца до Земли), см. рис. 23.7. Поэтому, перемещаясь с помощью некоего двигателя, которым снабдили его сущности из балка, тессеракт, в Кип-версии, может быстро перевезти Купера с одного края нашей Вселенной на другой (на Землю) через балк.

На рис. 29.4 показан один из моментов этого путешествия. Одно пространственное измерение на рисунке опущено, и тессеракт здесь – трехмерный куб в трехмерном балке, а Купер – двумерный силуэт на двумерной грани куба, двигающегося параллельно нашей двумерной Вселенной (бране).

.

Рис. 29.4. Купер путешествует через балк, над нашей браной, в одной из граней тессеракта. Одно пространственное измерение опущено

Чтобы это соответствовало показанному на экране, я считаю путешествие очень быстрым, длительностью всего в несколько минут, в течение которых ошарашенный Купер все еще падает в тессеракте. Когда он, наконец, попадает в большой зал, тессеракт пристыковывается около спальни Мёрф.

Чтобы это соответствовало показанному на экране, я считаю путешествие очень быстрым, длительностью всего в несколько минут, в течение которых ошарашенный Купер все еще падает в тессеракте. Когда он, наконец, попадает в большой зал, тессеракт пристыковывается около спальни Мёрф.

Стыковка со спальней Мёрф

Как происходит стыковка? В моей интерпретации тессеракт, остановившись в балке около Земли, должен пройти через трехсантиметровый AdS-слой, в котором заключена наша брана (см. главу 23), чтобы приблизиться к спальне Мёрф. Вероятно, сущности из балка, которые построили тессеракт, снабдили его каким-то устройством для раздвигания AdS-слоя, чтобы расчистить путь к нашей бране.

На рис. 29.5 показан тессеракт, который уже прошел через AdS-слой и пристыковался возле спальни Мёрф в доме Купера. Как и прежде, здесь опущено одно пространственное измерение, поэтому тессеракт изображен как трехмерный куб, а дом и спальня Мёрф, равно как и Купер, – двумерные.

Рис. 29.5. Тессеракт, пристыкованный возле спальни Мёрф

Дальняя грань тессеракта совмещена со спальней Мёрф. Поясню подробнее. Дальняя грань – это трехмерное сечение тессеракта, которое находится в спальне Мёрф в том же смысле, в каком сфера на рис. 22.2 находится в двумерной бране, а сферическое сечение гиперсферы на рис. 22.3 находится в трехмерной бране. То есть все, что есть в спальне Мёрф, включая ее саму, тоже находится внутри дальней грани.

Когда идущий от Мёрф луч света достигает границы между спальней и тессерактом, он может пойти дальше двумя путями. Либо остаться в нашей бране, пойдя по пути 1 (рис. 29.5) – в стену или наружу в открытую дверь. Либо оказаться в тессеракте, пойдя по пути 2, к следующей грани тессеракта, а через нее – в глаза Купера. Некоторые фотоны луча отправятся по пути 1, остальные – по пути 2, формируя для Купера изображение Мёрф.

Теперь посмотрите на рис. 29.6, где я восстановил недостающее измерение. Когда Купер смотрит сквозь правую стену зала, он видит происходящее в спальне Мёрф через правую стену спальни (белый луч справа). Глядя через левую стену зала, Купер видит спальню через ее левую стену (белый луч слева). Глядя через заднюю стену зала, он видит спальню через ее заднюю стену. Глядя через переднюю стену зала (оранжевый луч), он видит спальню через ее переднюю стену (хоть из рис. 29.6 это и не очевидно, но можете объяснить, почему это так?). Глядя в направлении желтого луча, Купер видит спальню через ее потолок, а глядя в направлении красного луча – через пол. Куперу, когда он смотрит по сторонам, кажется, будто он летает вокруг спальни Мёрф (так описал это Крис, когда впервые показал мне свой усложненный тессеракт).

Рис. 29.6. Купер смотрит в спальню Мёрф (обведена оранжевым) через каждую из шести стен своей грани тессеракта (обведена фиолетовым). В спальне он видит саму Мёрф

На рис. 29.6 все шесть лучей должны пройти через промежуточные кубы (грани тессеракта), прежде чем попадут в спальню Мёрф. В фильме незаметно, чтобы между залом и спальней было какое-то расстояние, следовательно, Крис и Пол сжали тессеракт в одном из измерений – см. серую стрелку с пометкой «Сжато» на рис. 29.6.

После такого сжатия каждая грань зала будет сообщаться с соответствующей гранью спальни (стеной, полом или потолком) без промежуточного пространства, так что для Купера происходящее будет выглядеть как на рис. 29.7. Он видит шесть спален, каждая из которых сообщается с одной из граней зала, и все они одинаковые, меняется только ракурс[90]. Они и вправду одинаковы – есть только одна спальня, хоть Куперу и кажется, что их шесть.

Рис. 29.7. Шесть видов спальни Мёрф, которые Купер наблюдает из своей грани тессеракта (Мой набросок от руки.)

Усложненный тессеракт Нолана

На рис. 29.8 показан кадр из фильма, где Купер плавает в зале тессеракта. Это совсем не похоже на рис. 29.7 – благодаря сложным модификациям, задуманным Крисом и воплощенным Полом и его командой.

Рис. 29.8. Купер плавает в усложненном тессеракте Нолана (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)

Первое, на что я обратил внимание, когда увидел усложненный тессеракт Криса, – в три раза увеличенные размеры зала, из-за чего грань спальни, сообщаясь с центром грани зала, занимает лишь девятую ее часть. Я изобразил это на рис. 29.9, убрав для простоты несущественные детали (в частности, три дальние грани зала)[91].

Рис. 29.9. Линейные размеры зала Купера втрое больше, чем у спальни, так что грань спальни занимает лишь девятую часть грани зала в центре (Мой рисунок от руки.)

Кроме того, я заметил, что через каждую спальню проходит по два будто бы смазанных стержня (рис. 29.10 и 29.11). Как объяснили мне Крис и Пол, везде, где такие стержни пересекаются, находится спальня – например, спальни 7–9, равно как и спальни 1–6.

Рис. 29.10. Стержни проходят через все спальни; по стержням течет время (Мой набросок от руки.)

Рис. 29.11. Рабочий вариант усложненного тессеракта из блокнота Кристофера Нолана[92]

Эти стержни тянутся неограниченно, пересекаясь, они образуют бесконечную на вид решетку из спален и залов[93] вроде того, в котором очутился Купер (контур, обозначенный штриховым пунктиром, на рис. 29.10). Например, коричневые грани спален 7, 8 и 9 примыкают к залу, контур которого обозначен точечным пунктиром. Дальний левый нижний угол этого зала перекрывает ближний правый верхний угол зала Купера.

ТАРС подсказывает нам, что представляют собой эти стержни, спальни и залы, когда говорит: «Время здесь – это пространственное измерение».

Крис и Пол подробно разъяснили мне этот момент. Сущности из балка, сказали они, отображают время для синеватых стержней (рис. 29.10) как текущее в направлении синей стрелки, для зеленоватых стержней – в направлении зеленой стрелки и для коричневатых – в направлении коричневой стрелки.

Чтобы хорошенько в этом разобраться, давайте остановимся на паре стержней, которые пересекаются, образуя спальню 2 (см. рис. 29.12). На этом рисунке вертикальные сечения спальни движутся вместе с потоком времени вправо, вдоль синей стрелки, и порождают таким образом синеватый стержень. Аналогично горизонтальные сечения движутся со временем вверх, вдоль зеленой стрелки, порождая зеленоватый стержень. Там, где пересекаются два набора сечений – то есть где пересекаются стержни, – образуется спальня.

Рис. 29.12. Сечения спальни Мёрф движутся по двум стержням. Спальня 2 находится там, где пересекаются два набора сечений

То же верно и для остальных стержней: там, где два стержня пересекаются, сечения, из которых они состоят, образуют спальню.

Поскольку скорость движения сечений конечна, спальни не синхронизированы. Например, если сечения проходят от одной спальни к следующей за секунду, тогда все спальни, пронумерованные голубыми цифрами, на рис. 29.13 отстоят от изображения спальни 0 на количество секунд, показанное черными цифрами. В частности, спальня 2 на секунду впереди спальни 0, спальня 9 на две секунды впереди спальни 0, а спальня 8 на четыре секунды впереди спальни 0. Можете объяснить почему?

Рис. 29.13. Фрагмент решетки, образованной пересечениями движущихся по стержням сечений спальни. Голубыми числами обозначены спальни (сохраняется нумерация с предыдущих рисунков). Черные числа показывают количество секунд, на которое отстоит та или иная спальня от спальни 0. Пунктирная фиолетовая стрелка – направление, в котором Купер может быстрее всего продвинуться вперед по времени спальни

В фильме промежуток времени между соседними спальнями составляет около десятой доли секунды. Это можно определить, внимательно изучив кадры с соседними спальнями, где занавески развеваются на ветру.

Разумеется, каждая спальня в тессеракте – это реальная спальня Мёрф в конкретный момент времени (см. черные числа на рис. 29.13).

Купер может двигаться быстрее, чем течет время в стержнях спальни, поэтому он может легко переместиться по тессеракту в тот момент времени спальни, какой только пожелает!

Чтобы быстрее всего переместиться вперед по времени спальни Мёрф, Купер должен двигаться по диагонали зала в направлении суммарного вектора синего, зеленого и коричневого времен, по фиолетовой пунктирной линии на рис. 29.13. Такие диагонали свободны от стержней, это открытые проходы, по которым Купер может свободно перемещаться. В фильме мы видим, как он летит по такому диагональному проходу, чтобы попасть из времени, где падают книги, во время, где дергается стрелка наручных часов (рис. 29.14).

Назад Дальше