Сформулировав уравнения, я закодировал их с помощью удобной компьютерной системы Mathematica. Я сравнил изображения, созданные моим программным кодом, с изображениями Алена Риасуэло и с радостью убедился, что в целом они совпадают. Затем я отослал плоды моих трудов Оливеру в Лондон.
Мой код был очень медленным и производил расчеты с низкой точностью. В задачу Оливера входило создать на основе моих уравнений программу, которая генерировала бы IMAX-изображения сверхвысокого качества, подходящие для фильма.
Мы с Оливером занимались этим поэтапно. Начали с невращающейся черной дыры и неподвижной камеры. Затем добавили вращение дыры. Затем – движение камеры: сначала по круговой орбите, потом с падением в черную дыру. И наконец мы занялись камерой вблизи червоточины.
Тут Оливер меня огорошил: чтобы смоделировать некоторые тонкие эффекты, кроме уравнений, описывающих траектории лучей света, ему также нужны уравнения, описывающие, как меняется размер и форма поперечного сечения луча света во время его путешествия вблизи черной дыры.
Я примерно представлял, как это сделать, но уравнения были ужасающе сложны, и было боязно ошибиться. Тогда я, изучив техническую литературу, обнаружил, что в 1977 году Серж Пинелт и Роб Рёдер из Торонтского университета вывели нужные уравнения почти в той форме, что требовалась мне. После трехнедельного сражения с собственной тупостью я окончательно довел их уравнения до нужного вида, закодировал их в Mathematica и отослал Оливеру. И наконец-то его программа смогла генерировать высококачественные изображения для фильма.
Для студии Double Negative программа Оливера была лишь отправной точкой. Оливер передал ее команде художников под руководством Эжени фон Танзелманн. Для начала они добавили аккреционный диск (см. главу 9) и фоновые изображения галактики с ее звездами и туманностями, которые Гаргантюа должна была искажать. Затем – «Эндюранс», «Рейнджеры», посадочные модули и «ручки настройки» камеры (скорость и направление ее движения, направление объектива, широта обзора и т. д.). И наконец из всего этого создали те потрясающие кадры, которые можно теперь увидеть в фильме. Подробнее об этом см. в главе 9.
Тем временем я корпел над присланными мне Оливером и Эжени видеороликами высокого разрешения, пытаясь разобраться, почему эти изображения выглядят так, а не иначе и почему звезды движутся именно таким образом. Для меня эти ролики были вроде экспериментальных данных: я увидел вещи, до которых сам, без компьютерного моделирования, никогда бы не додумался, например явления, о которых я рассказывал в предыдущем параграфе (рис. 8.5 и 8.6). Есть планы опубликовать одну или несколько научных статей по поводу этих находок.
Вид с корабля, совершающего гравитационную пращу
Хоть Крис и решил не показывать гравитационные пращи в «Интерстеллар», мне было интересно, как бы их увидел Купер, пилотируя «Рейнджер» к планете Миллер. Поэтому я, используя мои уравнения и систему Mathematica, получил изображения для камеры, которая вела бы запись с «Рейнджера». (Мои возможности скромнее, чем у Оливера и Эжени, поэтому и изображения получились гораздо менее детализированными.)
На рис. 8.7 показана последовательность кадров, которые сняла бы камера «Рейнджера», совершающего маневр вокруг черной дыры средней массы перед посадкой на планету Миллер. Этот маневр – по сути, гравитационная праща с рис. 7.2.
Рис. 8.7. Гравитационная праща вокруг дыры средней массы, на фоне Гаргантюа, вид с «Рейнджера» (Моя модель.)
На верхнем изображении Гаргантюа находится на заднем плане относительно проходящей перед ней черной дыры средней массы, которая захватывает лучи света, идущие от далеких звезд в направлении Гаргантюа, разворачивает их вокруг себя и выбрасывает в сторону камеры. Отсюда кольцо звездного света, которое окружает тень дыры средней массы. Хоть эта дыра и в тысячу раз меньше Гаргантюа, она находится гораздо ближе к «Рейнджеру» и потому не выглядит маленькой.
По мере того как дыра средней массы движется направо (с точки зрения камеры «Рейнджера», выполняющего гравитационный маневр), она загораживает первичное изображение тени Гаргантюа и проецирует перед собой вторичное изображение этой тени. Эти два изображения полностью аналогичны первичным и вторичным изображениям звезд при гравитационном линзировании, но теперь это тень Гаргантюа, которую линзирует дыра средней массы. На нижнем кадре вторичная тень уменьшается в размере, поскольку дыра средней массы движется дальше. На этот момент гравитационная праща практически завершена, и находящаяся на борту «Рейнджера» камера направлена к планете Миллер.
Жаль, но увидеть такое можно, лишь находясь поблизости от обеих черных дыр, а не с огромного удаления, на котором находится Земля. Для земных астрономов самые впечатляющие проявления черных дыр – это вырывающиеся из них джеты, а также свет от дисков горячего газа, движущегося по орбитам вокруг дыр. Об этом мы сейчас и поговорим.
9. Диски и джеты
Квазары
Большая часть объектов, наблюдаемых с помощью радиотелескопа, – это огромные – гораздо больше любой звезды – газовые облака. Однако в начале шестидесятых астрономы обнаружили при радиообзоре несколько крохотных объектов. Их назвали квазарами (от quasi-stellar radio sources – «похожие на звезды источники радиоизлучения»).
В 1962 году Мартен Шмидт, астроном из Калтеха, пользуясь самым большим в мире оптическим телескопом на горе Паломар, зафиксировал свет, исходящий от квазара под названием 3C273. Это напоминало яркую звезду, из которой бьет едва заметная струя – джет (рис. 9.1). Нечто из ряда вон!
Рис. 9.1. Сверху: фотография 3C273, сделанная космическим телескопом «Хаббл» NASA. Звезда (в левом верхнем углу) выглядит такой большой из-за переэкспонирования, сделанного, чтобы был виден джет (в нижнем правом углу). В действительности же она столь мала, что определить ее размер невозможно. Снизу: спектральные линии излучения от 3C273 (верхняя полоса) в сравнении со спектральными линиями водорода, полученными в земной лаборатории. Три спектральные линии квазара соответствуют трем линиям водорода (Hβ, Ηγ и Ηδ), но с длиной волн, увеличенной на 16 процентов (Это негатив: черные спектральные линии на самом деле белые.)
Когда Шмидт разложил излучение 3C273 на цветовые составляющие (примерно так, как это происходит, если пропустить луч света через призму), он увидел набор спектральных линий (снизу на рис. 9.1). На первый взгляд они были совершенно не похожи на какие-либо спектральные линии, виденные им прежде. Однако в феврале 1963 года, спустя несколько месяцев исследований, Шмидт понял, что эти линии казались ему необычными лишь потому, что длина их волн на 16 процентов превышала норму. Это называется эффектом Доплера, а возник он из-за движения квазара в направлении от Земли со скоростью, составляющей 16 процентов от скорости света – приблизительно c/6. Но чем вызвано такое сверхбыстрое перемещение? Самым вменяемым объяснением, пришедшим Шмидту на ум, было расширение Вселенной.
По мере расширения Вселенной далекие от Земли объекты движутся прочь от нас с большими скоростями, а объекты, которые находятся ближе, движутся медленнее. Огромная скорость 3C273 (одна шестая от скорости света) означает, что 3C273 удален от Земли на два миллиарда световых лет; это самый далекий из зафиксированных на тот момент объектов. На основе этого расстояния и яркости квазара Шмидт сделал вывод, что 3C273 отдает энергии в четыре триллиона раз больше, чем Солнце, и в сто раз больше, чем самые яркие галактики!
Период колебаний этой удивительной энергии был совсем невелик – около одного месяца, а значит, большая часть света должна была исходить от объекта столь маленького, что луч света мог бы пройти от одного его конца до другого за один месяц, а это гораздо меньше, чем расстояние от Земли до ближайшей к нам звезды – проксимы Центавра. Причем периоды колебаний некоторых других почти столь же мощных квазаров составляли лишь несколько часов, и, стало быть, размером они были немногим больше Солнечной системы. Энергия в сотню раз выше энергии излучения яркой галактики, исходящая из области размером с Солнечную систему, – это было что-то исключительное!
Черные дыры и аккреционные диски
Но как из столь маленькой области может исходить так много энергии? Если взять фундаментальные силы природы, то вариантов три: химическая энергия, ядерная энергия или гравитационная энергия.
Но как из столь маленькой области может исходить так много энергии? Если взять фундаментальные силы природы, то вариантов три: химическая энергия, ядерная энергия или гравитационная энергия.
Химическая энергия – это энергия, которая высвобождается, когда молекулы соединяются, образуя молекулы другого вида. Пример – горение бензина, в процессе которого молекулы бензина соединяются с молекулами атмосферного кислорода, результатом чего является вода, диоксид углерода и много тепла. Однако энергии, которая при этом выделяется, для нашего случая очень-очень мало.
Ядерная энергия высвобождается, когда ядра атомов соединяются, образуя новые ядра. Примеры – атомная бомба, водородная бомба, а также горение ядерного топлива внутри звезды. Хотя энергии при этом может выделяться гораздо больше, чем при химических реакциях (представьте себе разницу между канистрой бензина и ядерной бомбой), астрофизики не видят возможностей, позволяющих квазарам подпитываться ядерной энергией, и этот вариант тоже отпадает. Остается только гравитационная энергия, та самая, которая помогала «Эндюранс» совершать маневры вблизи Гаргантюа. В случае «Эндюранс» эта энергия использовалась во время гравитационной пращи вокруг черной дыры средней массы (см. главу 7). Ключевой момент здесь – сильная гравитация черной дыры. Соответственно, мощность квазара тоже должна обеспечиваться черной дырой.
В течение нескольких лет астрофизики пытались разобраться, как это возможно. Ответ был найден в 1969 году Дональдом Линден-Беллом из Гринвичской королевской обсерватории в Англии. Квазар, как предположил Линден-Белл, – это гигантская черная дыра, окруженная диском раскаленного газа (аккреционным диском), который пронизан магнитным полем (рис. 9.2).
Рис. 9.2. Художественное изображение аккреционного диска черной дыры, а также джетов, образующихся около ее полюсов (Работа Мэтта Зимета по моему наброску; из [Торн 2009].)
Горячий газ во Вселенной практически всегда пронизан магнитными полями (см. главу 2). Эти поля «привязаны» к газу: газ и магнитные поля перемещаются вместе, одновременно.
Когда в аккреционном диске действует магнитное поле, оно выступает катализатором преобразования гравитационной энергии в тепло и затем в свет. Поле порождает сверхвысокое трение[42], которое замедляет круговое движение газа, что уменьшает центробежную силу, противостоящую гравитационному притяжению, – вследствие чего газ перемещается внутрь, к черной дыре. По мере этого перемещения гравитация дыры ускоряет орбитальное движение газа в большей степени, чем его замедляет трение. Иначе говоря, гравитационная энергия переходит в кинетическую энергию (энергию движения). Затем магнитное трение преобразует половину этой новой энергии в тепло и свет, и все идет по новой.
Итак, энергия (посредством магнитного трения и газа аккреционного диска) порождается гравитацией черной дыры.
Собственно, как заключил Линден-Белл, от раскаленного газа аккреционного диска и исходит наблюдаемое астрономами яркое свечение квазаров. Более того, магнитное поле ускоряет часть электронов в газе до высокой энергии, и эти электроны движутся по спиральным траекториям вокруг линий магнитного поля, излучая наблюдаемые радиоволны квазара.
Линден-Белл выяснил и обосновал детали этих процессов, комбинируя ньютоновские, релятивистские и квантовые законы физики. Он объяснил все наблюдаемые астрономами свойства квазаров, за исключением джетов. Его научная статья, излагающая эти умозаключения и расчеты [Lynden-Bell 1969], – один из величайших трудов в истории астрофизики.
Джеты: извлечение энергии из завихрения пространства
В течение нескольких следующих лет наблюдавшие за квазарами астрономы обнаружили еще больше джетов и тщательно их изучили. Вскоре стало ясно, что это потоки горячего намагниченного газа, которые исходят из самого квазара (от черной дыры и ее аккреционного диска), см. рис. 9.2. Причем сила выброса джетов чрезвычайно велика: газ в них движется с околосветовой скоростью. На выходе из квазара, а также когда он сталкивается вдали от квазара с веществом, газ испускает энергию в виде света, радиоволн, рентгеновских лучей и даже гамма-лучей. Порой джеты так же ярки, как сам квазар, – в сотню раз ярче самых ярких галактик.
Почти десятилетие астрофизики бились над вопросом, что питает джеты, делая их такими быстрыми, тонкими и прямыми. Были предложены разные версии; наиболее интересную из них выдвинули в 1977 году Роджер Блэндфорд из Кембриджского университета в Англии и его студент Роман Знаек, которые отталкивались от исследований оксфордского физика Роджера Пенроуза[43], см. рис 9.3.
Рис. 9.3. Механизм образования джетов Блэндфорда – Знаека (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)
Их версия такова. Газ из аккреционного диска постепенно по спирали опускается в черную дыру. В момент пересечения горизонта событий каждая частица газа оставляет свою часть магнитного поля у горизонта, и окружающий диск удерживает ее там. Черная дыра, вращаясь, вовлекает пространство в вихревое движение (рис. 5.4 и 5.5), что, в свою очередь, вызывает завихрение магнитного поля (рис. 9.3). Магнитное поле, завихряясь, создает мощное электрическое поле (похожим образом оно генерируется в динамо-машине на гидроэлектростанции). Электрическое поле вместе с завихряющимся магнитным полем выбрасывают плазму (горячий ионизированный газ) вверх и вниз со скоростью, близкой к световой, – так и возникают два джета. Направления выброса джетов стабилизируются (если рассматривать усредненные показатели по годам) вращением черной дыры, которое стабильно благодаря гироскопическому эффекту.
У квазара 3C273 только один джет обладает достаточной яркостью, чтобы быть видимым, но у многих других квазаров видны оба джета.
Блэндфорд и Знаек детально описали все процессы, отталкиваясь от теории относительности Эйнштейна. Они смогли объяснить почти все наблюдаемые свойства джетов.
Согласно другой версии (рис. 9.4), завихряющееся магнитное поле привязано к аккреционному диску, а не к горизонту дыры и движется по кругу, влекомое орбитальным движением диска. В остальном же все повторяется: эффект динамо-машины и выброс плазмы. Эта версия работает даже для невращающейся черной дыры. Однако у нас есть основания считать, что большинство черных дыр вращается, и весьма быстро, поэтому мне кажется, что механизм Блэндфорда – Знаека (рис. 9.3) лучше всего подходит для квазаров. Но, быть может, я предвзят: в восьмидесятых я потратил немало времени, изучая различные аспекты идей Блэндфорда – Знаека и даже выступил соавтором монографии на эту тему.
Рис. 9.4. То же, что на рис. 9.3, но магнитное поле привязано к аккреционному диску (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)
Откуда берется диск
В 1969 году Линден-Белл предположил, что квазары расположены в центрах галактик. Мы не видим галактику вокруг квазара, сказал он, потому что ее свет намного слабее, чем свет самого квазара, квазар затмевает для нас галактику. Спустя десятилетия астрономы благодаря новым технологиям обнаружили свечение галактик вокруг множества квазаров, что подтвердило предположение Линден-Белла.
Также в течение последних десятилетий мы узнали, откуда берется большая часть газа, из которого состоит диск. Порой какая-нибудь звезда подходит так близко к черной дыре в центре квазара, что приливные силы этой дыры (см. главу 4) разрывают звезду на части. Немалая доля газа из расколовшейся звезды попадает в плен к черной дыре, образуя аккреционный диск.
Благодаря развитию компьютерных технологий в последние годы астрофизикам удалось смоделировать этот процесс. Рис. 9.5 получен в результате такого моделирования, выполненного Джеймсом Гиллоконом, Энрико Рамирез-Руисом, Дэниелом Кэсеном (из Калифорнийского университета в Санта-Крузе) и Стефаном Россвогом (из Бременского университета)[44]. В начальный момент (который на рисунке не показан) звезда двигалась практически прямо к черной дыре, приливная гравитация которой начинала растягивать звезду в направлении дыры и сжимать с боков, как на рис. 6.1. Двенадцать часов спустя звезда уже сильно деформирована и находится в положении, показанном на рис. 9.5 сверху. В течение еще нескольких часов она огибает дыру по синей орбите гравитационной пращи и, как видно на рисунке, деформируется еще больше. Через 24 часа звезда распадается на части, поскольку ее собственная гравитация уже неспособна этому противостоять.