В этой главе мы уже не раз обращались к помощи алгебры, чтобы разрешить исключительно геометрические проблемы. Принцип этот прекрасно работает и в обратную сторону: порой геометрия значительно облегчает понимание алгебры. Взгляните на типичную задачу. Насколько малым может быть значение где x есть любое положительное число? При x = 1 имеем 2, при x = 1,25 – 1,25 + 0,8 = 2,05, при x = 2 – 2,5. Логика подсказывает, что наименьшим ответом будет 2, и это на самом деле так, только вот как нам в этом удостовериться? Самый простой и эффективный метод расчета будет предложен в главе 11, пока же давайте ограничимся методом геометрическим.
Возьмем фигуру, состоящую из четырех костяшек домино, каждая из которых имеет размер x на 1/x. Расположены они так, чтобы в пространстве между ними получился квадрат. Какова будет общая площадь всей фигуры (включая этот внутренний квадрат)?
С одной стороны, поскольку фигура представляет собой квадрат x + 1/x на x + 1/x, ее площадь должна быть (x + 1/x)². С другой стороны, площадь каждой костяшки домино равна 1, поэтому площадь фигуры в целом составит как минимум 4. Следовательно,
(x + 1/x)² ≥ 4или x + 1/x ≥ 2, что и требовалось доказать.☺
Начав с площади прямоугольника, можно найти площадь практически любой другой геометрической фигуры, в первую очередь – треугольника.
Теорема: Площадь треугольника с длиной основания b и высотой h составляет
Для наглядности возьмем три конкретных треугольника, основание каждого из которых рана b, а высота – h, что значит, что их площадь также должна быть равна. Это, по сути, наш третий вопрос, ответ на который, готов поспорить, многих из вас удивил.
В зависимости от того, какие размеры имеют прилежащие к основанию AC углы ∠A и ∠C, нам нужно рассмотреть три разных частных случая, а затем создать копию треугольника ABC и вписать его вместе с оригиналом в прямоугольник с площадью bh, как показано на рисунке. Треугольник ABC займет ровно половину этой площади, а значит, его площадь составит как мы и предполагали.
Если углы ∠A и ∠C острые, остроумным будет и доказательство. Из точки B проведите линию длиной h так, чтобы она была перпендикулярна отрезку AC (она называется высотой треугольника ABC), пересекая его в точке X, как показано на рисунке:
AC, таким образом, состоит из отрезков AX и XC, длины которых составляют соответственно b1 и b2, где b1 + b2 = b. А так как треугольники BXA и BXC получились у нас прямоугольными, то, согласно предыдущему примеру, их площади будут равны соответственно. Следовательно, площадь большого треугольника ABC –
что и требовалось доказать.
В случае же, если ∠A или ∠C является тупым, чертеж будет выглядеть вот так:
В примере с остроугольным треугольником мы представляли ABC как сумму двух прямоугольных треугольников. Здесь же нам нужна их разность. Высота любом тупоугольном треугольнике выходит за его границы, образуя тем самым большой треугольник. В нашем случае это ABY, длина основания которого равна b + c, а площадь – Маленький же прямоугольный треугольник CBY имеет площадь Следовательно, площадь ABC может быть представлена как
что и требовалось доказать.
Теорема Пифагора
Теорема Пифагора является, пожалуй, чуть ли не самой популярной теоремой в геометрии. И уж точно одной из самой популярных в математике вообще. Поэтому в том, что ей посвящен целый раздел нашей «геометрической» главы, нет ничего странного.
Итак, в прямоугольном треугольнике сторона, лежащая напротив угла в 90°, называется гипотенузой, другие две стороны – катетами. В треугольнике, изображенном чуть ниже, катетами являются отрезки BC (длиной a) и AC (длиной b), а гипотенузой – отрезок AB (длиной c).
Теорема Пифагора: В прямоугольном треугольнике с катетами длиной a и b и гипотенузой длиной c
a² + b² = c²Существует более трех сотен различных доказательств этой теоремы, но мы остановимся лишь на самых простых. Можете пропускать некоторые из них, если хотите: моя основная цель заключается в том, чтобы хотя бы одно из них заставило вас улыбнуться, а может быть, даже восхититься.
Доказательство 1: Ниже на рисунке изображен квадрат, составленный из четырех конгруэнтных прямоугольных треугольников.
Вопрос: Какова площадь этого квадрата?
Ответ 1: Длина каждой из сторон квадрата равна a + b, следовательно, его площадь составит (a + b)² = a² + 2ab + b².
Ответ 2: С другой стороны, большой квадрат состоит из четырех треугольников, площадь каждого из которых равна ab/2, и пустого (тоже квадратного) пространства между ними, площадь которого равна c². (Кстати, откуда мы взяли, что оно является квадратным? Во-первых, мы знаем, что его стороны равны. Во-вторых, благодаря правилу симметрии, мы можем убедиться в том, что равны и все его углы: если повернуть эту фигуру на 90°, она будет абсолютно идентична изначальной, а значит, все ее углы должны быть одинаковыми. Так как сумма углов любого четырехугольника всегда составляет 360°, мы можем сделать вывод, что каждый из четырех углов нашей фигуры равен 90°.) Следовательно, их общая площадь выглядит как 4(ab)/2 + c² = 2ab + c².
Сведем первый и второй ответы к одному уравнению:
a² + 2ab + b² = 2ab + c²Вычтем 2ab из обеих сторон и получим
a² + b² = c²что и требовалось доказать.☺
Доказательство 2: Возьмем ту же фигуру, что и в предыдущем доказательстве, только немного поменяем расположение треугольников в ней. И если на левом рисунке очевидно, что площадь пустого пространства равна c², то на правом она уже составит a² + b². Следовательно, c² = a² + b², что и требовалось доказать.☺
Доказательство 3: Снова передвинем треугольники, только на этот раз так, чтобы они располагались более компактно (как на следующем рисунке), а c² была бы площадью не маленького внутреннего, а большого квадрата (это будет все еще квадрат, ведь каждый его угол есть сумма ∠A и ∠B, то есть 90°). Общая площадь треугольников по-прежнему равна 4(ab/2) = 2ab. Площадь же внутреннего пустого пространства составит (a – b)² = a² – 2ab + b². Соединив все вместе, имеем 2ab + (a² – 2ab + b²) = a² + b², что и требовалось доказать.
Доказательство 4: Это будет доказательство подобием, поэтому нам нужно сначала вспомнить все, что мы знаем и подобных треугольниках. В прямоугольном треугольнике ABC проведем линию CD так, чтобы она была перпендикулярна гипотенузе AB, как на рисунке:
Обратите внимание, что треугольник ADC содержит как прямой угол, так и ∠A, из чего следует, что его третий угол должен быть конгруэнтным ∠B. Подобным же образом треугольник CDB содержит как прямой угол, так и ∠B, из чего следует, что его третий угол должен быть конгруэнтным ∠A. Следовательно, все три треугольника будут подобными:
Обратите внимание, что треугольник ADC содержит как прямой угол, так и ∠A, из чего следует, что его третий угол должен быть конгруэнтным ∠B. Подобным же образом треугольник CDB содержит как прямой угол, так и ∠B, из чего следует, что его третий угол должен быть конгруэнтным ∠A. Следовательно, все три треугольника будут подобными:
∆ACB ~ ∆ADC ~ ∆CDBИмейте в виду, что порядок букв здесь имеет важное значение: ∠ACB = ∠ADC = ∠CDB = 90° являются прямыми углами, как и ∠A = ∠BAC = ∠CAD = ∠BCD и ∠B = ∠CBA = ∠DCA = ∠DBC. Сопоставление длин сторон первых двух треугольников дает
AC/AB = AD/AC ⇒ AC² = AD × ABТочно так же для первого и третьего треугольников –
CB/BA = DB/BC ⇒ BC² = DB × ABСложим эти два уравнения и получим
AC² + BC² = AB × (AD + DB)А так как AD + DB = AB = c, мы приходим к
b² + a² = c²что и требовалось доказать.☺
Следующее доказательство будет чисто геометрическим – никакой алгебры, зато очень много непростой визуализации.
Доказательство 5: В этот раз возьмем два квадрата с площадями a² и b². Расположим их вплотную друг к другу – как показано на рисунке слева, и их общая площадь тогда составит a² + b². «Разрежем» получившуюся фигуру на два прямоугольных треугольника (длины катетов составят a и b, длина гипотенузы – c) и один странной формы геометрический объект. Обратите внимание, что угол в нижней части этого «странного объекта» должен быть равен 90°, потому что его окружают ∠A и ∠B. Представьте себе, что в левом верхнем углу большого квадрата и правом верхнем углу маленького квадрата расположено нечто вроде опорных стержней, вокруг которых потенциально может происходить «вращение» (подобно тому, как комнатная дверь «вращается» вокруг дверной петли, закрепленной на косяке).
А теперь мысленно поверните нижнюю часть левого треугольника на 90° против часовой стрелки – так, чтобы «вывести» его за верхнюю границу большого квадрата. Поверните на 90° и второй треугольник, только теперь по часовой стрелке – так, чтобы прямые углы «легли» один на другой в точке сочленения двух квадратов, как показано на рисунке:
В результате получится квадрат, площадь которого будет равна c². Следовательно, a² + b² = c², что и требовалось доказать.☺
Теорема Пифагора нужна нам для того, чтобы объяснить ответ на четвертый вопрос нашей викторины – вопрос о футбольном поле и двух его воротах, расположенных в 110 метрах друг от друга, с натянутой между ними веревкой длиной 110 метров 30 сантиметров.
Расстояние от ворот до центра поля составляет 55 метров. Поднятая в этом месте вверх – до точки h – веревка дает нам прямоугольный треугольник с длиной одного катета 55 и длиной гипотенузы 55,15. Берем теорему Пифагора, добавляем немного алгебры по вкусу, перемешиваем… и получаем
Достаточно высоко даже для самого большого грузовика, правда?
Магия геометрии
Давайте закончим эту главу тем же, чем начали ее – небольшим геометрическим фокусом. Большинство доказательств теоремы Пифагора основываются на перестановке частей одной геометрической фигуры с целью получения другой с той же площадью. Но смотрите, какой обнаруживается парадокс. Возьмем квадрат 8 на 8. Его, пожалуй, вполне можно разделить на четыре части, как на рисунке чуть ниже – длина одной стороны каждой части должна равняться 3, 5 или 8 (да-да, одному из чисел Фибоначчи!). Перегруппируем эти части так, чтобы получился прямоугольник 5 на 13. (Обязательно попробуйте сделать это сами!) Но ведь площадь начальной фигуры равна 8 × 8 = 64, а конечной – 5 × 13 = 65! Но как это возможно?
Разгадка этого парадокса заключается в том, что прямая линия, являющаяся «диагональю» прямоугольника 5 на 13, на самом деле не такая уж и прямая. Смотрите сами: треугольник, обозначенный буквой С, имеет гипотенузу с наклоном 3/8 = 0,375 (потому что значение ее y-координаты увеличивается на 3, а значение x-координаты – на 8) притом, что верхняя грань фигуры (трапеции), обозначенной буквой D, имеет наклон 2/5 = 0,4 (потому что значение ее y-координаты увеличивается на 2, а значение x-координаты – на 5). То же происходит и с нижними гранями трапеции и треугольника, находящихся в верхней части. Отрезки с разным наклоном никогда и ни за что не образуют прямую линию, а значит, если мы присмотримся к нашему прямоугольнику, то увидим небольшой зазор между двумя почти «прямыми» почти «диагоналями» (см. рисунок). И получается, что, будучи растянутой по всей площади, эта щель дает нам лишнюю единицу общей площади.
В этой главе мы узнали много интересного о треугольниках, квадратах, прямоугольниках и других полигонах, образованных с помощью разного количества прямых линий. Геометрия окружностей и других фигур изогнутой формы более сложна. Здесь нам не обойтись без тригонометрии и ее специфических методов счисления. И, конечно же, без основы основ – удивительного числа π.
Глава номер восемь Магия числа π
Вокруг да около окружности
Прошлую главу мы начали с проверки своей геометрической интуиции: речь шла сначала о прямоугольниках, затем – о треугольниках и наконец – о натянутой между двух футбольных ворот веревке. Пора поговорить и об окружностях, и тут уж мы мелочиться не будем – начнем с того, что обмотаем веревкой Землю!
Вопрос 1. Представьте себе веревку, достаточно длинную, чтобы обернуть ее вокруг Земли по экватору (это примерно 40 075 км). Но перед тем как завязать узелок, добавим к ней еще три метра. Так вот, если неким волшебным образом нам удастся поднять веревку над землей и водой по всей ее длине на одну и ту же высоту, какой будет эта высота?
А. Чуть больше пары сантиметров.
Б. Достаточной, чтобы под ней можно было проползти.
В. Достаточной, чтобы под ней можно было пройти в полный рост.
Г. Достаточной, чтобы под ней мог проехать грузовик.
Вопрос 2. Две точки окружности – X и Y (см. рисунок) – соединяют две дуги: длинная и короткая. Допустим, что на большей (то есть длинной) дуге мы хотим поставить третью точку Z. Где именно она должна находиться, чтобы угол ∠XZY был как можно больше?
А. В точке A (ровно напротив середины расстояния между XY).
Б. В точке B (являющейся отражением точки X по линии, проходящей через центр круга).
В. В точке С (лежащей настолько близко к точке X, насколько возможно).
Г. Где угодно, потому что все углы будут абсолютно равны.
Чтобы ответить на эти вопросы, нужно разобраться в особенностях геометрии окружностей. Впрочем, если вам все это кажется смертельно скучным, можно вполне обойтись и так: ответом на первый вопрос будет вариант Б, на второй – вариант Г. Но разве вам интересно глотать пищу, не чувствуя ее вкуса? Так вот, особенности геометрии окружностей и есть тот самый вкус.
Любая окружность может быть выражена двумя понятиями – точкой O и положительной величиной r, причем точка O равноудалена от остальных точек окружности на расстояние, равное r (см. рисунок ниже). Точка O называется центром окружности. Расстояние r – радиусом окружности. А еще радиусом для удобства называется отрезок OP, проведенный от точки O к лежащей на линии круга точке P.
Длина окружности и ее площадь
Диаметр окружности – это величина D, обозначающая расстояние между двумя максимально удаленными друг от друга точками окружности и определяющаяся как его удвоенный радиус. То есть