«В ходе следствия все выдвинутые рабочие версии тщательно проверены. Собраны исчерпывающие сведения о крейсере и его техническом состоянии, о готовности экипажа и крейсера к выходу в море, о вооружении атомохода, о подготовке и ходе учений, об обстоятельствах катастрофы, ее последствиях и последующей поисково-спасательной операции», - отметил Устинов.
Кроме того, по его словам, при проверке выдвинутых версий была проведена оценка собранных доказательств, включая данные, представленные из Великобритании, ЮАР и Норвегии.
«Процесс расследования, само уголовное дело о гибели АПРК “Курск” и его экипажа являются уникальными», - подчеркнул Устинов.
По его словам, ранее опыта расследования подобных происшествий на море в России не было. Генпрокурор высказал уверенность, что такой опыт уникален и в мировой практике расследования причин техногенных катастроф
[191].
Военачальники, понёсшие наказание в связи с катастрофой “Курска”, не будут привлекаться к уголовной ответственности
Генпрокурор РФ Владимир Устинов заявил, что в ходе следствия по делу гибели “Курска” выявлены нарушения в организации проведения учений и поисково-спасательной операции, допущенные должностными лицами Военно-морского Флота России.
«Как известно, все эти лица наказаны, и наказаны очень жёстко», - сказал Устинов на пресс-конференции в пятницу в Москве. Вместе с тем генпрокурор подчеркнул, что «эти нарушения не состоят в причинной связи с гибелью подлодки “Курск” и её экипажа, что исключает привлечение кого-либо из них к уголовной ответственности».
Генпрокурор сообщил, что министру обороны РФ внесено представление с требованием устранить допущенные нарушения.
По словам Устинова, уголовное дело состоит из 133 томов, 38 из них содержат сведения, составляющие государственную тайну, вследствие чего возможность предать гласности материалы уголовного дела в полном объёме отсутствует.
Генпрокурор заявил, что следствие не считает виновным в катастрофе кого-либо из 118 погибших членов экипажа АПРК “Курск”.
АПЛ “Курск” затонула 12 августа 2000 года во время учений Северного флота. Все находившиеся на её борту в момент аварии 118 человек погибли.
Большинство опрошенных радиостанцией «Эхо Москвы» считает, что истинная причина гибели “Курска” так и не была названа
Большинство опрошенных радиостанцией «Эхо Москвы» считает, что 26 июля Генпрокуратурой так и не была названа истинная причина гибели АПЛ “Курск”
[192].
Экспресс-опрос, проведённый в рамках программы “Рикошет” по интерактивным телефонам, показал, что 80 % опрошенных придерживается данного мнения, в то время как 20 % опрошенных считает, что сегодня Генпрокуратурой была названа истинная причина гибели АПЛ “Курск”.
Всего в ходе опроса за 5 минут на радиостанцию поступило 1950 телефонных звонков.
* *
*
Причины, по которым С.Прошкин - руководитель предприятия-разработчика торпеды 65-76 и её модификаций - выразил несогласие с версией гибели корабля, оглашённой Генеральной прокуратурой в качестве истинной, - ясны, если иметь даже самое общее представление об устройстве торпедного аппарата, самой торпеды и размещении торпеды в аппарате.
Торпедный аппарат подводной лодки это - труба, один конец которой находится внутри прочного корпуса лодки, а другой выходит за его пределы. С обоих концов эта труба закрывается крышками. Крышка, запирающая торпедный аппарат изнутри прочного корпуса, называется задней. Крышка, запирающая торпедный аппарат со стороны забортного пространства, называется передней. Обычно в торпедном аппарате давление равно давлению в отсеках лодки. Соответственно к трубе, передней и задней крышкам предъявляются те же требования по прочности, что и к прочному корпусу лодки: должны выдерживать без утраты работоспособности гидростатическое давление на предельной глубине погружения и воздействие ударной волны подводного взрыва, мощность которой задана в требованиях ВМФ к проектированию подводных лодок и оружия для них.
Диаметр трубы торпедного аппарата несколько больше, чем калибр торпеды, вследствие чего торпеда в аппарате фиксируется специальными направляющими (в некоторых конструкциях с амортизаторами), а между нею и стенками аппарата есть зазор порядка сантиметра и более (в зависимости от конструкции аппарата и обводов торпеды). Этот зазор называется кольцевым. Перед торпедным выстрелом аппарат заполняется водой из цистерн кольцевого зазора
[193], и давление в трубе аппарата выравнивается с забортным давлением. После этого открывается передняя крышка, и торпеда может быть выстрелена
[194]. После выстрела передняя крышка закрывается, вода из трубы торпедного аппарата сливается в торпедозаместительные цистерны лодки, и по завершении слива воды и выравнивания давления в аппарате с давлением в торпедном отсеке, задняя крышка может быть открыта, и новая торпеда может быть заряжена в аппарат. При закрытой передней крышке и равенстве давления в аппарате и в отсеке задняя крышка может быть открыта для извлечения торпеды в отсек (если это предусмотрено конструкцией и на стеллажах в отсеке есть место) в том числе и для перезарядки аппарата торпедой другого типа и предназначения.
Соответственно этому порядку функционирования торпедного аппарата, передняя и задняя крышка конструктивно отличаются друг от друга. Обе крышки открываются наружу по отношению к полости трубы аппарата. Но передняя крышка забортным давлением прижимается к её опорному контуру, на котором обеспечивается герметичность закрытия; а заднюю крышку забортное давление отрывает от её опорного контура, на котором обеспечивается герметичность закрытия.
Вследствие такого различия в характере статических и динамических нагрузок, которые должны воспринимать передняя и задняя крышки, передняя крышка, грубо говоря, конструктивно близка к обычной двери - ось, вокруг которой она вращается, и привод, который её поворачивает; а в состав механизмов, обеспечивающих функционирование задней крышки, кроме этого входят элементы, обеспечивающие прижимание её к опорному контуру в закрытом положении и фиксацию.
Соответственно описанному ранее порядку функционирования торпедного аппарата к задней крышке предъявляется ещё одно дополнительное требование: при открытой передней крышке и заполненном водой аппарате задняя крышка должна выдерживать не только гидростатическое давление на предельной глубине погружения, но и воздействие на предельной глубине погружения ударной волны подводного взрыва в соответствии с действующими нормами ВМФ к взрывостойкости.
Безусловно, что достаточно мощный взрыв, произойди он внутри торпедного аппарата, разорвёт его на части, и при этом какие-то обломки аппарата и торпеды разлетятся по торпедному отсеку, разрушая и повреждая на пути своего полёта всё, включая и торпеды в стеллажах, что приведёт к лавинообразному распространению катастрофы. Но динамику взрыва внутри торпедного аппарата следует рассматривать соответственно устройству торпедного аппарата, соответственно особенностям его конструктивных элементов и особенностям находящейся в нём торпеды.
Поэтому первый вопрос: какова минимально необходимая мощность взрыва, чтобы торпедный аппарат был разорван на куски, разлетающиеся во всех направлениях?
Если мощность взрыва будет существенно ниже этого уровня, то взрыв просто вышибет переднюю крышку торпедного аппарата, которая хотя и прижимается к своему опорному контуру конструктивно-механически, но не имеет силовых конструкций, предназначенных для противодействия давлению изнутри торпедного аппарата, столь мощных как те, что входят в состав механизмов закрытия задней крышки.
Второй вопрос: какое количество перекиси водорода должно вылиться во внутренние полости торпеды или из торпеды в пространство кольцевого зазора для того, чтобы обеспечить необходимую мощность такого внутреннего взрыва в аппарате?
Но никакое количество перекиси не может излиться из не разрушенной торпеды почти мгновенно и почти мгновенно разложиться на воду и атомарный кислород (т.е. при разложении перекиси первоначально выделяется О, а не О2 или О3 - озон), который вступит в реакцию почти со всем, с чем соприкоснётся, в свободном пространстве, тем более при высоких температурах.
Однако в соединениях топливной арматуры торпеды могут быть неплотности, материал уплотнительных прокладок и мастик-герметиков с течением времени может потерять свою эластичность, вследствие чего в нём под воздействием перепадов температуры и вибраций могут возникнуть микротрещины и т.п. В этом случае через такого рода дефекты и повреждения может начаться истечение перекиси и других компонент топлива и технических сред из систем торпеды.
Однако в соединениях топливной арматуры торпеды могут быть неплотности, материал уплотнительных прокладок и мастик-герметиков с течением времени может потерять свою эластичность, вследствие чего в нём под воздействием перепадов температуры и вибраций могут возникнуть микротрещины и т.п. В этом случае через такого рода дефекты и повреждения может начаться истечение перекиси и других компонент топлива и технических сред из систем торпеды.
При этом надо иметь в виду, что концентрированная (маловодная) перекись водорода - вязкая жидкость плотностью 1,45 т/м3. Вследствие своей вязкости она не очень-то хорошо течёт, например, в сопоставлении её течения с течением керосина. Кроме того, есть силы поверхностного натяжения, которые для каждой пары «жидкость - твёрдое тело» - свои, и которые определяют характер проникновения жидкости в микротрещины и трещины. В частности керосин проникает в микротрещины гораздо лучше, чем перекись, и потому подкрашенный керосин является одним из средств выявления микротрещин. Эти обстоятельства приводит ещё к одному вопросу.
Третий вопрос: достаточна ли технически возможная скорость истечения перекиси водорода и топлива из торпеды в случае нарушения герметичности её резервуаров и трубопроводов (вследствие микротрещин и неплотностей в соединениях топливной арматуры) для того, чтобы химические реакции реагентов, изливающихся из систем торпеды, породили взрывной характер нарастания давления в пространстве кольцевого зазора и полостях торпеды?
Из выступления В.Устинова неясно:
· ни какой минимальной мощности должен быть взрыв внутри аппарата для того, чтобы его разорвало на куски, разрушило его конструктивные элементы (заднюю крышку и т.п.), повредило прочный корпус и размещённое в нём оборудование;
· ни какое количество и каких именно компонентов топлива должно было излиться из торпеды для того, чтобы обеспечить необходимую мощность взрыва;
· ни сколько времени необходимо для того, чтобы из торпеды через неплотности соединений и микротрещины излилось необходимое количество реагентов;
· ни то, есть ли в самой торпеде или в аппарате достаточное свободное пространство, в котором достаточно быстро изливающиеся компоненты энергоносителей могли бы вместиться в необходимом количестве, смешаться и прореагировать между собой или с конструктивными элементами торпеды или аппарата так, чтобы произошёл взрыв;
· ни то, будет ли этот взрыв способен сразу разорвать торпедный аппарат на куски, разлетающиеся в разные стороны и разрушающие всё на пути своего полёта, либо он будет двухстадийным:
- на первой стадии он разрушит торпеду так, что из неё польётся, всё что есть, вследствие чего
- на второй стадии произойдёт взрыв необходимой для разрушений аппарата мощности;
· не ясно и то, способен ли такой двухстадийный взрыв на первой стадии выбить переднюю крышку аппарата, в результате чего вторая стадия взрыва с разрушением аппарата на куски может и не произойти, поскольку давление в аппарате будет сброшено при разрушении передней крышки, и он будет залит морской водой
[195].
Но как можно понять из реакции С.Прошкина на заявление Генеральной прокуратуры о технической первопричине гибели лодки, технически возможные утечки топлива и концентрированной перекиси водорода из торпеды 65-76 через микротрещины и неплотности соединений арматуры в топливной системе, не могут быть столь интенсивны, чтобы произошёл взрыв, мощность которого была бы достаточной для того, чтобы не то, что разорвать торпедный аппарат на куски и повредить прочный корпус, но и повредить торпеду так, чтобы произошёл второй взрыв, который разнесёт аппарат на куски и повредит прочный корпус.
Как прямо сказал С.Прошкин, у экипажа есть шесть часов на нейтрализацию аварийной торпеды, надо полагать, даже в случае самых интенсивных технически возможных утечек компонентов её энергоносителей.
Иначе говоря, для того, чтобы произошёл взрыв, способный разорвать торпедный аппарат на куски и повредить прочный корпус, торпеда должна быть повреждена каким-либо внешним воздействием. То есть, чтобы истечение энергоносителей из конструктивно разделённых резервуаров торпеды повлекло за собой взрывной характер нарастания в аппарате давления и температуры, на которые не успеют прореагировать системы обеспечения безопасности торпеды в аппарате и экипаж лодки, - необходимо, чтобы торпеда была сильно деформирована или разрушена: только в этом случае за короткое время через образовавшиеся разрывы в элементах её конструкции произойдёт излияние, смешение и химическая реакция компонентов её энергоносителей в таких количествах, что произойдёт взрыв, мощность которого достаточна для того, чтобы разорвать аппарат на куски, разрушить его конструктивные элементы, повредить прочный корпус и размещённое в нём оборудование.
Но торпедный аппарат проектируется так, чтобы он сам и его элементы не были источником такого рода факторов воздействия на торпеду. Более того, торпедный аппарат проектируется так, чтобы он был способен изолировать полностью или в течение некоторого достаточно продолжительного времени находящуюся в нём торпеду от воздействия такого рода внешних факторов. Причём в районе размещения торпедных аппаратов в междукорпусном пространстве лодки тоже нет ничего, что могло бы повредить торпедный аппарат. Но и при взгляде изнутри лодки в торпедном отсеке с исправным оборудованием тоже нет факторов, способных оказать столь разрушительное воздействие на ту часть торпедного аппарата, что находится внутри отсека.
Это означает, что если торпеда в аппарате повреждена внешним воздействием настолько, что из её конструктивно разделённых резервуаров потекло обильными струями топливо или окислитель, то к этому моменту повреждён лёгкий корпус и труба торпедного аппарата вне прочного корпуса как минимум сильно деформирована каким-то внешним воздействием и, вследствие этого вряд ли сохранила герметичность.
Соответственно механические повреждения трубы торпедного аппарата, вызванные внешним воздействием на него и локализованные вне прочного корпуса
[196], неизбежно должны были стать концентраторами напряжений в его конструкциях и соответственно - слабыми местами. Но не повреждённая в этом случае задняя крышка, находящаяся внутри прочного корпуса, имеющая специальные запоры (они должны выдерживать прохождение ударной волны при открытой передней крышке и заполнении забортной водой трубы аппарата), не могла стать самым слабым звеном достаточно сильно деформированного аппарата.
Однако и в этом случае при истечении компонент топлива в пространство кольцевого зазора, нарастание давления в аппарате в ходе химической реакции вряд ли бы носило взрывной характер, поскольку кольцевой зазор по своему объёму и геометрии - очень неэффективная «камеры сгорания». И это заставляет предположить, что при невзрывном характере нарастании давления повреждённый аппарат разорвало бы по уже имеющимся в его трубе разрывам и сгибам, полученным при его деформации под воздействием какого-либо внешнего по отношению к нему фактора (например, в случае столкновения с другим кораблём или подводным препятствием); или нарастание давления вышибло бы переднюю крышку, которая прижимается к своему опорному контуру большей частью забортным давлением и не имеет таких запоров, какими снабжена задняя крышка. Соответственно аварию торпеды, причиной которой стало внешнее механическое воздействие на торпедный аппарат, должны были выдержать задняя крышка с её запорами, и та часть трубы торпедного аппарата, что расположена внутри прочного корпуса.
Но если в районе торпедного аппарата происходит взрыв достаточно мощного противолодочного оружия, то аппарат неизбежно будет повреждён вместе с находящейся в нём торпедой воздействием осколков оружия и разлетающихся обломков корпуса, воздействием вспышки и ударной волны взрыва, а из повреждённой взрывом торпеды произойдёт обильное истечение компонентов её топлива практически в область вспышки взрыва.
Иными словами, и в версию о мощном взрыве компонентов энергоносителя практической торпеды, находящейся в аппарате, просится некий внешний взрыв, во вспышке которого почти мгновенно прореагировали и топливо, и окислитель практической торпеды “Курска”, усилив поражающее воздействие именно внешнего взрыва.
Ещё в первой редакции настоящего сборника было высказано предположение, что выстрел учебной торпедой с “Курска” мог спровоцировать торпедный залп на поражение с натовской лодки, которая вела разведку в зоне учений Северного флота и шла в готовности № 1. В этой связи сошлёмся на уже упоминавшийся «отчётный» фильм “Гибель «Курска». Следствие закончено”, в котором пропагандируется версия Генпрокуратуры.