Если показатели, которые сравниваются, являются сопоставимыми, то расчет относительных величин может быть правильным.
В зависимости от цели статистического исследования относительные величины подразделяются на следующие виды: выполнение договорных обязательств; относительные величины, характеризующие структуру совокупности; относительные величины динамики; сравнения; координации; относительные величины интенсивности.
28. Виды относительных величин
Рассмотрим следующие виды относительных величин.
1. Относительная величина выполнения договорных обязательств – это показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах. Расчет показателя производится путем соотношения объема фактически выполненных обязательств и объема обязательств, предусмотренных в договоре. Выражается он в форме коэффициентов или в процентах.
2. Относительные величины структуры – это показатели, характеризующие долю от состава изучаемых совокупностей. Относительная величина структуры определяется отношением абсолютной величины отдельного элемента статистической совокупности к абсолютной величине всей совокупности, т. е. как отношение части к общему (целому), и характеризует удельный вес части в целом, в форме процента. В анализе коммерческой деятельности торговли и сферы услуг относительные величины дают возможность изучить весь состав товарооборота по его ассортименту, состав работников фирмы – по определенным признакам (стажу работы, полу, возрасту), состав расходов предприятия и другие факторы, влияющие на коммерческую деятельность предприятия.
3. Относительные величины динамики характеризуют изменение изучаемого явления во времени, выявляют направление развития, измеряют интенсивность развития. Рассчитывается относительная величина динамики как отношение уровня признака в определенный период или момент времени к уровню того же признака в предшествующий период или момент времени, т. е. характеризует изменение уровня определенного явления во времени.
4. Относительные величины сравнения характеризуют количественное соотношение одноименных показателей, относящихся к различным объектам статистического наблюдения. Для сопоставления уровня цен на один и тот же товар, реализуемый через государственные магазины и на рынке, используются относительные величины сравнения. За базу сравнения принимается государственная цена.
5. Относительные величины координации – это разновидность показателей сравнения. Они применяются для характеристики соотношения между отдельными частями статистической совокупности. Относительные величины координации характеризуют структуру изучаемой совокупности.
6. Относительные величины интенсивности демонстрируют, насколько широко распространено исследуемое явление в определенной среде, характеризуются соотношением разноименных и взаимосвязанных между собой абсолютных величин.
Относительная величина демонстрирует, сколько единиц одной статистической совокупности приходится на единицу другой статистической совокупности.
Комплексное использование абсолютных и относительных величин дает всестороннюю характеристику изучаемого явления.
29. Общая характеристика средних величин
Средняя величина – это обобщающая характеристика единиц совокупности по какому-либо варьирующему признаку.
Средняя величина – это один из распространенных приемов обобщений.
Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.
В анализе изучаемых явлений роль средних величин огромна.
Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.
Средние величины – это обобщающие показатели, в которых находят выражение действие общих условий, закономерность изучаемого явления.
Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.
Средняя величина абстрактна, так как характеризует значение абстрактной единицы.
Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.
Средняя отображает что-то общее, которое складывается в определенном единичном объекте.
В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.
Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.
Объективное свойство статистического процесса или явления отражает средняя величина.
Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны.
Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.
Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.
Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.
30. Виды средних величин
Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.
В изучении средних величин применяются следующие показатели и обозначения.
Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как хл, х2, x3,… хп; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.
Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.
Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.
Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.
Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.
Средняя гармоническая взвешенная, тождественна средней арифметической: Когда произведения fxодинаковы или равны
единицы (m= 1) применяется средняя гармоническая
простая:
где х– отдельные варианты; n– число.
Если имеется n коэффициентов роста, то формула среднего коэффициента:
Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.
Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.
Средняя квадатическая взвешенная равна:
31. Структурные средние величины. Мода и медиана
Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.
Мода (Мо) – чаще всего встречающийся вариант.
Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.
Мода (Мо) – чаще всего встречающийся вариант.
Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.
Мода представляет наиболее часто встречающееся или типичное значение. Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.
В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность). В пределах интервала надо найти то значение признака, которое является модой.
где x0– нижняя граница модального интервала;
h– величина модального интервала;
fm– частота модального интервала;
fm -1 – частота интервала, предшествующего модальному;
fm+ 1 – частота интервала, следующего за модальным.
Мода зависит от величины групп, от точного положения границ групп.
31б Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).
Медиана (Me)– это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.
Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.
Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.
Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.
Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:
Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.
32. Понятие вариации
Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае.
Колебания отдельных значений характеризуют показатели вариации.
Термин «вариация» произошел от лат. variatio – «изменение, колеблемость, различие». Под вариацией понимают количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.
Систематическая вариация помогает оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов.
Для характеристики колеблемости признака используется ряд показателей, такие как размах вариации, определяемый как разность между наибольшим (Хмах) и наименьшим (xmjn) значениями вариантов:
Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней без учета знака этих отклонений.
Меру вариации более объективно отражает показатель дисперсии.
Среднее квадратическое отклонение – это мерило надежности средней.
Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах, которые позволяют сравнивать характер рассеивания в различных распределениях. Расчет показателей меры относительного рассеивания осуществляют отношением абсолютного показателя рассеивания к средней арифметической и умножают на 100%.
При помощи группировок, подразделив изучаемую совокупность на группы, однородные по признаку-фактору, можно определить три показателя колеблемости признака в совокупности: общую дисперсию, межгрупповую дисперсию и среднюю из внутригруп-повых дисперсий.
Общая дисперсия характеризует вариацию признака, зависящую от всех условий в изучаемой статистической совокупности.
Межгрупповая дисперсия отражает вариацию изучаемого признака, которая возникает под влиянием признака-фактора, положенного в основу группировки, характеризует колеблемость групповых (частных) средних хi и общей средней хо.
Средняя внутригрупповых дисперсий характеризует случайную вариацию в каждой отдельной группе, возникает под влиянием факторов кроме положенного в основу группировки.
Дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, и доли единиц, не обладающих им.
33. Характеристика закономерности рядов распределения
С помощью рядов распределения решается важнейшая задача статистики – характеристика и измерение показателей колеблемости для варьирующих признаков.
В вариационных рядах существует определенная связь в изменении частот и значений варьирующего признака: с увеличением варьирующего признака величина частот вначале возрастает до определенной величины, а затем уменьшается. Такого рода изменения называются закономерностями распределения.
Важные свойства кривой распределения – это степень ее асимметрии, высоко– или низковершинность, которые в совокупности характеризуют форму или тип кривой распределения.
Важная задача – это определение формы кривой.
Характер общего распределения предполагает оценку степени его однородности и вычисление показателей асимметрии и эксцесса.
Симметричным называют распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой.
Для симметричных распределений средняя арифметическая, мода и медиана равны между собой.
Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка.
Общим является нормальное распределение, которое может быть представлено графически в виде симметричной куполообразной кривой.
Куполообразная форма кривой показывает, что большинство значений концентрируется вокруг центра измерения, и в действительно симметричном одновершинном распределении средняя, мода и медиана совпадут.
Закон нормального распределения предполагает, что отклонение от среднего значения является результатом большого количества мелких отклонений, что позитивные и негативные отклонения равновероятны и что наиболее вероятным значением всех в равной мере надежных измерений является их арифметическая средняя.
Теоретической кривой распределения называют кривую распределения, которая выражает общую закономерность данного типа.
В кривой нормального распределения отражается закономерность, которая возникает при взаимодействии множества случайных причин.
Для симметричных распределений рассчитывается показатель эксцесса (островершинности).
Эксцесс – выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.
Оценка показателей асимметрии и эксцесса дает возможность сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения.
34. Определение выборочного наблюдения
Так как сплошное наблюдение дорого и трудоемко, то его заменили выборочным.
Выборочное наблюдение – это способ несплошного наблюдения, при котором лишь часть совокупности, отобранная по определенным правилам выборки и обеспечивающая получение данных, характеризует всю совокупность в целом.
Основная цель несплошного наблюдения состоит в получении характеристик изучаемой статистической совокупности по обследованной ее части.
Выборочное наблюдение – это метод статистического исследования, при котором обобщающие показатели совокупности устанавливаются только по отдельно взятой части на основе положений случайного отбора. При выборочном методе изучению подвергается только некоторая часть изучаемой совокупности, при этом подлежащая изучению статистическая совокупность называется генеральной совокупностью. Выборочной совокупностью или просто выборкой можно называть отобранную из генеральной совокупности часть единиц, которая будет подвергаться статистическому исследованию.