Ноль: биография опасной идеи - Чарльз Сейфе 15 стр.


Для такого сложного подсчета требуется остроумная уловка. Измерить объекты неправильной формы очень трудно. Например, представьте себе, что у вас пятно на деревянном полу. Какую площадь занимает пятно? Это совсем не очевидно. Если пятно имеет форму круга, квадрата или треугольника, площадь легко вычислить: просто возьмите рулетку и измерьте радиус или высоту и основание. Однако не существует формулы для вычисления площади пятна в форме амебы. Впрочем, существует другой способ.

Возьмите прямоугольный коврик и положите его поверх пятна. Если коврик покрывает пятно полностью, значит, пятно меньше коврика; если площадь коврика — квадратный фут, то площадь пятна меньше квадратного фута.

При использовании ковриков меньшего размера аппроксимация делается лучше и лучше. Предположим, что пятно покрывается пятью ковриками размером в одну восьмую квадратного фута. Значит, площадь пятна не больше пяти восьмых квадратного фута, что меньше нашей оценки при помощи коврика в один квадратный фут. По мере того как вы берете все меньшие и меньшие коврики, покрытие делается все лучше и лучше, и их общая площадь все больше приближается к истинному размеру пятна. На самом деле вы можете определить площадь пятна как предел площади ковриков, когда площадь каждого из них стремится к нолю (рис. 43).


Рис. 43. Покрытие пятна ковриками


Проделаем то же самое с рациональными числами, но на этот раз наши коврики — это наборы чисел. Например, число 2,5 «покрывается» ковриком, который включает, скажем, все числа между 2 и 3: это коврик размера 1. Использование такого рода коврика для покрытия рациональных чисел имеет некоторые весьма странные последствия, как показал Кантор с помощью своей карты «рассадки». Карта «рассадки» охватывает все рациональные числа — соотносит каждое из них с его «местом», так что их можно пересчитать одно за другим по порядку, основываясь на номере их «места». Возьмите первое попавшееся рациональное число и поместите его на числовую ось. Накройте его ковриком размера 1. Этим ковриком будет накрыто множество других чисел, но об этом мы можем не беспокоиться. Пока накрыто наше первое число, все в порядке.

Теперь возьмем второе число. Накроем его ковриком размера 1/2. Возьмем третье число и накроем его ковриком размера 1/4 и т. д. Продолжая процесс до бесконечности, поскольку каждое рациональное число присутствует на карте «рассадки», получим, что каждое рациональное число покрыто ковриком. Какова же суммарная площадь ковриков? Это наша старая приятельница, ахиллесова сумма. Складывая площади ковриков, мы получим сумму 1 + 1/2 + 1/4+ 1/8 + … + 1/2n, которая стремится к 2, когда n стремится к бесконечности. Таким образом, мы можем накрыть бесконечное множество рациональных чисел на числовой оси набором ковриков, общая площадь которых равна 2. Это означает, что все рациональные числа оси можно загнать на отрезок длиной меньше двух единиц пространства.

Как мы поступали в случае пятна, сделаем размеры ковриков еще меньше, чтобы получить лучшую аппроксимацию. Если вместо того, чтобы начинать с коврика размера 1, начать с коврика размером в 1/2 , то общая сумма площадей окажется равной 1. Значит, рациональные числа в сумме занимают меньше одной единицы пространства. Если мы начнем с первого коврика размера 1/1000 , все коврики займут меньше 1/500 единицы пространства, и все рациональные числа уместятся меньше чем на 1/500 единицы пространства. Если мы начнем с коврика размером в один атом, мы сможем накрыть все рациональные числа на числовой оси ковриками, которые в сумме имеют площадь меньшую, чем атом. Однако даже такие крохотные коврики, что могут все вместе уместиться в одном атоме, накроют все рациональные числа (рис. 44).


Рис. 44. Покрытие рациональных чисел


Мы можем брать какие угодно малые коврики, мы можем накрыть все рациональные числа ковриками, в сумме имеющими площадь в половину атома, в нейтрон или в кварк — столь малыми, какие только можем вообразить.

Так каков же тогда размер совокупности рациональных чисел? Мы определили размер как предел — сумму площадей ковриков, размер каждой из которых стремится к нолю.

Однако одновременно мы видели, что по мере уменьшения ковриков сумма покрывающих площадей делается все меньше и меньше, меньше атома, кварка или миллионной доли кварка — и при этом покрывает все рациональные числа. Каков предел величины, без остановки делающейся все меньше и меньше? Ноль.

Каков размер совокупности рациональных чисел? Они не занимают никакого пространства. Эту концепцию трудно воспринять, однако она истинна.

Несмотря на то, что рациональные числа находятся повсюду на числовой оси, они совсем не занимают места. Если бы мы кинули дротик в числовую ось, он никогда не попал бы в рациональное число. Никогда. И хотя рациональные числа не занимают места, этого нельзя сказать об иррациональных, потому что для них нельзя составить карты «рассадки» и пересчитать их по одному: всегда останутся неохваченные. Кронекер ненавидел иррациональные числа, но они занимают все место на числовой оси.

Бесконечность рациональных чисел — всего лишь ноль.

Глава 7 Абсолютные ноли

Физика ноля

Наконец стало неоспоримым, что бесконечность и ноль неразделимы и чрезвычайно важны для математики. У математиков не осталось иного выбора, кроме как научиться жить с ними. Для физиков, впрочем, ноль и бесконечность казались совершенно несущественными для понимания того, как функционирует Вселенная. Сложение бесконечностей и деление на ноль могут быть частью математики, но это не путь природы.

Или так надеялись ученые. Пока математики открывали связи между нолем и бесконечностью, физики начали сталкиваться с нолями в мире природы. Ноль перекочевал из математики в физику. В термодинамике он стал непреодолимым барьером: самой низкой возможной температурой. В общей теории относительности Эйнштейна ноль превратился в черную дыру, чудовищную звезду, проглатывающую целые солнца. В квантовой механике ноль оказался странным источником энергии — бесконечной и вездесущей, присутствующей даже в глубоком вакууме призрачной силой, проявляемой ничем.

Жар ноля

Первый неизбежный ноль в физике возникает из закона, который полстолетия был в употреблении. Этот закон был в 1787 году открыт Жаком Александром Шарлем, французским физиком, уже прославившимся первым полетом на наполненном водородом воздушном шаре. Шарля помнят не за его достижения в аэронавтике, а за закон природы, носящий его имя.

Шарль, как и многие физики его времени, был заинтересован удивительно различными свойствами разных газов. Кислород заставляет угли вспыхнуть ярким пламенем, углекислый газ тушит их. Хлор имеет зеленый цвет и смертельно ядовит, окись азота бесцветна и заставляет людей смеяться. Однако у всех этих газов основные свойства одни и те же: при нагревании они расширяются, при охлаждении сжимаются. Шарль открыл, что их поведение чрезвычайно постоянно и предсказуемо. Если взять одинаковые объемы двух разных газов, поместить их в одинаковые баллоны и одинаково нагреть, они расширятся одинаково, а при охлаждении одинаково сожмутся. Более того, с нагреванием или охлаждением на каждый градус связан определенный процент увеличения или уменьшения объема. Закон Шарля описывает связь объема газа с его температурой.

В 1850-х годах, однако, Уильям Томсон, британский физик, заметил в законе Шарля что-то странное: призрак ноля. Чем ниже температура, тем меньше и меньше становится объем баллонов. Если снижение температуры продолжается с постоянной скоростью, с постоянной скоростью уменьшается и объем баллонов, но это продолжается не вечно. Существует точка, в которой, согласно теории, газ не занимает никакого пространства. Закон Шарля гласит, что баллон с газом должен сжаться до нулевого объема. Конечно, нулевой объем — это самый малый возможный объем. Когда газ достигает этой точки, он не занимает никакого пространства. (Конечно, не может идти речи об отрицательном пространстве.) Если объем газа связан с его температурой, минимальный объем означает минимальную температуру. Газ не может становиться холоднее и холоднее до бесконечности. Когда вы не можете добиться еще большего сжатия баллона, вы не можете еще больше понизить и температуру. Это абсолютный ноль. Это низшая возможная температура, немногим меньше –273 градуса Цельсия.

Томсон больше известен как лорд Кельвин, и по имени Кельвина названа эта универсальная температурная шкала. Если шкала Цельсия — шкала со ста делениями, где ноль градусов — температура, при которой вода замерзает, а сто градусов — температура, при которой она кипит (при этом, естественно, подразумеваются так называемые «нормальные условия»), то по шкале Кельвина ноль градусов — это абсолютный ноль, а «цена» градуса совпадает со шкалой Цельсия.

Абсолютный ноль — это состояние, когда газ в сосуде лишен всей своей внутренней энергии. На самом деле такое состояние — недостижимая цель. Невозможно охладить тело до абсолютного ноля. Можно приблизиться к нему очень близко, тормозя атомы лазерным лучом. Физики сейчас могут достичь таким образом нескольких миллионных градуса выше абсолютного ноля. Впрочем, все во Вселенной стремится не дать на самом деле достичь абсолютного ноля. Дело в том, что любое имеющее энергию тело двигается и излучает свет. Например, люди состоят из молекул воды, загрязненной небольшим количеством органических соединений. Все входящие в эти соединения атомы колеблются в пространстве. Чем выше температура, тем быстрее атомы двигаются. При этом они сталкиваются с другими, заставляя соседей двигаться в свою очередь.

Допустим, вы пытаетесь охладить банан до абсолютного ноля. Чтобы избавиться от всей внутренней энергии, содержащейся в банане, вы должны заставить его атомы перестать двигаться. Вы должны поместить банан в контейнер и охладить. Однако и контейнер тоже состоит из атомов. Атомы контейнера колеблются, они сталкиваются с атомами банана и приводят их в движение. Даже если вам удастся заставить банан плавать в абсолютном вакууме в центре контейнера, вы не сможете полностью прекратить движение, потому что танцующие частицы испускают свет. Свет постоянно исходит из атомов контейнера и попадает в банан, заставляя его частицы снова приходить в движение.

Все атомы, составляющие охлаждающую обмотку и жидкий азот, двигаются и испускают свет, так что банан постоянно поглощает энергию колеблющихся и испускающих свет атомов контейнера, пинцета, которым вы держите банан, охлаждающей обмотки, которую вы используете для создания низкой температуры. Вы не можете создать щит, который изолировал бы банан от всего окружения. Атомы такого щита тоже колебались бы и излучали свет. Каждое тело находится под воздействием окружающей его среды, так что охладить до абсолютного ноля что-либо — банан, кубик льда, сосуд с жидким гелием — невозможно. Это непреодолимый барьер.

Следствия из открытия абсолютного ноля весьма отличались от законов Ньютона. Выведенные Ньютоном уравнения давали физикам силу. Ученые могли с большой точностью определять орбиты планет и предсказывать движение различных тел. С другой стороны, открытие Кельвина говорило физикам о том, чего они сделать не могут. Они не могли даже достичь абсолютного ноля. Это препятствие очень разочаровывало мир науки, но оно положило начало новой области физики — термодинамике.

Термодинамика — это наука о том, как ведут себя тепло и энергия. Подобно открытому Кельвином абсолютному нолю, законы термодинамики воздвигли непреодолимые барьеры, проникнуть за которые не может, как бы ни старался, ни один ученый. Например, термодинамика говорит, что создание вечного двигателя невозможно. Алчные изобретатели заваливают научные учреждения и журналы проектами невероятных механизмов — механизмов, которые вечно производили бы работу без источника энергии. Однако законы термодинамики утверждают, что подобное невозможно. Это еще одна цель, которая не может быть достигнута, несмотря ни на какие усилия. Невозможно даже создать машину, которая бы работала, не тратя энергии зря: какая-то ее часть обязательно будет отдаваться Вселенной в виде тепла. (Термодинамика похуже казино: вы не можете выиграть, что бы ни предпринимали. Нельзя даже сыграть вничью.)

Желание построить мостик между термодинамикой и механикой породило новую дисциплину, статистическую механику. Рассматривая коллективное движение групп атомов, физики могут предсказать поведение материи. Например, статистическое описание газа объясняет закон Шарля. По мере увеличения температуры газа его молекулы в среднем двигаются быстрее и с большей силой ударяют в стенки баллона. Газ сильнее давит на стенки, и давление повышается. Статистическая механика — теория колебаний — объяснила некоторые основополагающие свойства материи и даже, как на протяжении долгого времени многим казалось, природу света. Эта проблема многие столетия озадачивала ученых. Исаак Ньютон полагал, что свет состоит из крохотных частиц, испускаемых любым светящимся объектом. Со временем, однако, появились основания считать, что свет на самом деле — скорее волна, чем частица. В 1801 году британский ученый открыл интерференцию света, казалось бы, полностью разрешив вопрос.

Интерференция происходит со всеми видами волн. Когда вы кидаете камешек в пруд, возникают круговые колебания воды — волны. Вода поднимается и опускается, гребни и впадины распространяются наружу по кругу. Если вы бросите одновременно два камня, колебания будут интерферировать друг с другом. Вы сможете наглядно в этом убедиться, если опустите два вибрирующих стержня в сосуд с водой. Когда гребень волны от одного стержня встречается с впадиной от другого, они гасят друг друга; если вы присмотритесь внимательно, то заметите линии спокойной, лишенной волн воды (рис. 45).


Рис. 45. Интерференция волн на поверхности воды


То же самое верно для света. Если свет проходит через две узкие щели, то появляются темные участки — свободные от световых волн (рис. 46). (Сходный эффект можно наблюдать в домашних условиях. Сложите пальцы вместе. Между ними останутся крохотные промежутки, через которые проходит свет. Взгляните через один из этих промежутков на лампочку, и вы заметите тонкие темные линии, особенно вблизи верха и низа промежутка. Это — следствие волновой природы света.) Волны подобным образом интерферируют, а частицы — нет. Поэтому феномен интерференции, казалось бы, однозначно разрешает вопрос природы света. Физики пришли к выводу, что свет — это не частицы, а волны электрических и магнитных полей.


Рис. 46. Интерференция света. Если вы повернете книгу боком и посмотрите вдоль страницы, вы увидите на ней интерференционную картину.


Такая ситуация существовала до середины 1800-х годов. Казалось бы, она точно соответствует законам статистической механики.

Специалисты по статистической механике объясняют, как колеблются молекулы материи. Волновая теория света предполагает, что колебания молекул каким-то образом порождают волны излучения — световые волны. Более того, чем горячее тело, тем быстрее его молекулы двигаются. В то же время чем горячее объект, тем больше энергии в световых волнах света, которые он испускает. Все прекрасно сходится. Что касается света, то чем быстрее колеблется волна — чем выше ее частота, тем больше в ней энергии. (А также чем выше ее частота, тем короче длина волны: расстояние между двумя гребнями.) Действительно, один из самых важных законов термодинамики — так называемое уравнение Стефана — Больцмана — связывает колебания молекул с колебаниями света. Он связывает температуру тела с общим количеством световой энергии, которую оно испускает. Это была самая большая победа статистической механики и волновой теории света. (Уравнение утверждает, что испускаемая энергия пропорциональна температуре в четвертой степени. Оно говорит не только о том, сколько излучения испускает тело, но также насколько горячим оно становится, получив определенное количество энергии. Именно этот закон — наравне с цитатой из книги Исайи — физики использовали для того, чтобы определить, что температура небес выше 500 градусов по Кельвину.)

К несчастью, победа продержалась недолго. В конце столетия двое британских физиков попытались применить теорию статистической механики колебаний для решения простой проблемы. Требовалось довольно обычное вычисление: сколько света испускает пустая идеально поглощающая его полость? Применив базовые уравнения статистической механики (которые говорят о том, как колеблются молекулы) и уравнения, описывающие взаимодействие с ними электрических и магнитных полей (а к этому времени уже стало известно, что свет — это колебания электромагнитного поля), физики вывели уравнение, определяющее зависимость доли энергии, изучаемой полостью, от длины световых волн, испускаемых полостью при любой данной температуре.

Так называемый закон Рэлея — Джинса, названный в честь физиков лорда Рэлея и сэра Джеймса Джинса, работает довольно хорошо. Он точно предсказывает долю энергии, уносимой светом в длинноволновой части диапазона. Но при высоких энергиях, в коротковолновой части спектра, закон оказывается неточным. Он предсказывает, что тело испускает все больше и больше света при все меньшей и меньшей длине волны (и тем самым излучает все больше и больше энергии). Соответственно, в коротковолновой части спектра, близкой к нулевой длине волны, свет уносит бесконечное количество энергии. И этот вывод из закона Рэлея — Джинса не зависит от температуры тела. Даже кубик льда должен был бы испускать достаточно ультрафиолетовой, рентгеновской и гамма-радиации, чтобы испарить все вокруг. Это так называемая ультрафиолетовая катастрофа. Нулевая длина волны эквивалентна бесконечной энергии. Ноль и бесконечность сговорились, чтобы разрушить прекрасную, ясную систему законов. Разгадка этого парадокса быстро сделалась ведущей проблемой физики. Рэлей и Джинс не сделали никаких ошибок. Они использовали уравнения, которые физики считали верными, применили их общепринятым способом, но получили результат, не отражающий того, как работает природа. Кубики льда не уничтожают цивилизации гамма-излучением, хотя по принятым тогда правилам физики это было бы неизбежно. Какой-то из законов физики должен был быть неверным. Но какой?

Назад Дальше