Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио 19 стр.


Позвольте подчеркнуть, что Гаусс, очевидно, боялся, что последователи Канта, которых он называл «беотийцами» (для древних греков это было синонимом дураков), сочтут это философской ересью. Гаусс продолжал.

С другой стороны, я собирался когда-нибудь все это записать, чтобы эти идеи, по крайней мере, не умерли со мной. Поэтому для меня стало приятной неожиданностью, что мне можно не трудиться, и я очень рад, что опередил меня – причем так поразительно – не кто-нибудь, а сын моего старого друга.

Фаркаш был вполне удовлетворен похвалой Гаусса – он считал, что она «очень приятна», – зато Янош совершенно опустил руки. Почти десять лет он отказывался верить, что Гаусс по праву претендует на первенство, и его отношения с отцом, который, как он считал, поспешил рассказывать Гауссу о его результатах, сильно осложнились. Когда же Янош наконец обнаружил, что Гаусс и в самом деле начал работать над этой задачей еще в 1799 году, то очень озлобился – и все его последующие труды по математике, а он оставил по себе около двадцати тысяч рукописных страниц, по сравнению с юношескими достижениями были весьма посредственны.

Однако в том, что Гаусс и в самом деле много размышлял над неевклидовыми геометриями, сомневаться не приходится[105]. В дневниковой записи за сентябрь 1799 года он писал: «In principiis geometriae egregios progressus fecimus» («Мы сделали энергичные шаги вперед в области основ геометрии»). В дальнейшем, в 1813 году, он отметил: «В теории параллельных прямых мы сейчас зашли не дальше Евклида. Это partie honteuse [позорная часть] математики, которая рано или поздно должна принять совсем другую форму». Спустя еще несколько лет, 28 апреля 1817 года, он утверждает: «Я все больше и больше прихожу к убеждению, что невозможно доказать, что наша [евклидова] геометрия единственна и неизбежна». Наконец – и в противоположность воззрениям Канта – Гаусс заключил, что евклидову геометрию нельзя считать вселенской истиной и что скорее «придется поставить [евклидову] геометрию не на одну ступень с арифметикой, положение которой априорно, а приблизительно на уровень механики». Подобные выводы сделал независимо и Фердинанд Швейкарт (1780–1859), профессор юриспруденции, о чем он позднее и сообщил Гауссу – примерно в 1818–19 годах. Поскольку ни Гаусс, ни Швейкарт своих результатов не публиковали, традиционно считают, что приоритет принадлежит либо Лобачевскому, либо Бойяи, хотя ни того ни другого нельзя, конечно, считать единственными «творцами» неевклидовых геометрий.

Гиперболическая геометрия поразила мир математики, будто молния, и нанесла сокрушительный удар по восприятию евклидовой геометрии как единственного безошибочного описания пространства. До работ Гаусса-Лобачевского-Бойяи евклидова геометрия и представляла собой, в сущности, мир природы. А когда стало ясно, что можно взять другой, произвольный набор аксиом и построить на нем другой тип геометрии, поначалу это вызвало подозрение, что математика все же плод человеческой изобретательности, а не открытие истин, существующих независимо от человеческого сознания. В то же время коллапс непосредственной связи между евклидовой геометрией и реальным физическим пространством выявил фатальные на первый взгляд недостатки самой идеи математики как языка Вселенной.

Новый удар по привилегированному положению евклидовой геометрии был нанесен, когда один из учеников Гаусса Бернхард Риман показал, что гиперболическая геометрия – не единственно возможная неевклидова геометрия. В блестящей речи, прочитанной в Геттингене 10 июня 1854 года (на рис. 45 показана первая страница опубликованной лекции) Риман представил свои представления «О гипотезе, лежащей в основе геометрии»[106]. Начинает он с того, что «геометрия предполагает концепцию пространства, а также задает основные принципы построений в пространстве. Она дает лишь номинальные определения этого, в то время как их сущностные характеристики появляются в виде аксиом». Однако Риман отмечает, что «отношения между этими исходными предпосылками остаются неясными, мы не видим, необходима ли связь между ними, и если да, то в какой степени, или даже возможна ли она a priori. Среди возможных геометрических теорий Риман говорил и об эллиптической геометрии – той, какую можно наблюдать на поверхности сферы (рис. 41, с). Отметим, что в такой геометрии кратчайшее расстояние между двумя точками – не прямая линия, а скорее сегмент окружности большого круга, центр которого совпадает с центром сферы. Этим обстоятельством пользуются авиакомпании: полеты из США в Европу следуют не по прямой линии на карте, а скорее по большой окружности, идущей на север. Легко убедиться, что две любые большие окружности пересекаются в диаметрально противоположных точках. Например, два земных меридиана, которые на экваторе кажутся параллельными, на полюсах пересекаются. Таким образом, в отличие от евклидовой геометрии, где через точку вне прямой можно провести лишь одну параллельную этой прямой линию, и гиперболической геометрии, где можно провести как минимум две параллели, в эллиптической геометрии на сфере параллельных линий нет вообще.

Риман сделал и следующий шаг в разработке неевклидовых концепций и представил геометрии в искривленных пространствах с тремя и четырьмя измерениями и даже больше. Одно из важнейших понятий, разработанных Риманом, – это понятие кривизны, скорости искривления кривой или поверхности. Например, поверхность яйца быстрее всего закругляется у заостренного конца. Риман дал и точное математическое определение кривизны в пространстве с любым количеством измерений. При этом он скрепил узы между алгеброй и геометрией, то есть продолжил дело Декарта. В трудах Римана уравнениям с любым числом переменных нашлись геометрические соответствия – и новые понятия из области новых геометрий стали партнерами алгебраических уравнений.


Рис. 45


Высокое положение евклидовой геометрии – не единственная жертва открытий, которые распахнули перед геометрией в XIX веке совершенно новые горизонты. Представления Канта о пространстве долго не продержались. Вспомним, что Кант утверждал, что данные органов чувств организуются исключительно по шаблонам, которые задал Евклид, еще до того, как регистрируются в нашем сознании. Геометры XIX столетия быстро выработали у себя интуитивное понимание неевклидовых геометрий и научились исследовать мир с этой точки зрения. Оказалось, что евклидово восприятие пространства все-таки не интуитивно, ему учатся. Все эти поразительные открытия натолкнули великого французского математика Анри Пуанкаре (1854–1912) на вывод, что аксиомы геометрии – это «не синтетические интуитивные априорные догадки и не экспериментальные факты. Это договоренности (курсив мой. – М. Л.). Какую именно договоренность из всех возможных мы выбираем, зависит от экспериментальных фактов, но это свободный выбор». Иначе говоря, Пуанкаре считал аксиомы и постулаты всего лишь «замаскированными определениями».

Представления Пуанкаре были вдохновлены не только неевклидовыми геометриями, о которых мы только что говорили, но и бурным ростом других новых геометрий, который к концу XIX века, похоже, совершенно вышел из-под контроля (Poincaré 1891). Скажем, в проективной геометрии (проекции получаются, например, если спроецировать на экран изображение на кинопленке) можно буквально менять местами роли точек и линий, так что теоремы о точках и линиях (в этом порядке) становятся теоремами о линиях и точках. В дифференциальной геометрии математики применяют дифференциальное исчисление для изучения локальных геометрических свойств различных математических пространств, например поверхности сферы или тора. По крайней мере, на первый взгляд все эти геометрии и им подобные казались порождением математического вдохновения и воображения, а не точными описаниями физического пространства. Ну и как прикажете в таких условиях отстаивать представление о Боге-математике? Ведь если «Бог всегда остается геометром (пер. Л. Сумм)» (эту фразу приписывал Платону историк Плутарх), которая из множества геометрий соответствует божественным практикам?

Недостатки классической евклидовой геометрии становились все очевиднее, и это вынудило математиков всерьез задуматься об основах математики в целом и об отношениях математики и логики в частности. К этой важной теме мы вернемся в главе 7. Здесь же позвольте лишь отметить, что поколебалось представление о самоочевидности аксиом и постулатов как таковых. А следовательно, именно революция в геометрии, вероятно, оказала самое сильное влияние на представление о природе математики – невзирая на то, что в XIX веке был достигнут значительный прогресс и в алгебре, и в анализе.

О людях, пространстве и числах

О людях, пространстве и числах

Однако математики не могли подступиться к всеохватной теме оснований математики, пока не были решены некоторые «мелкие» вопросы, требовавшие немедленного вмешательства. Во-первых, разработка и публикация неевклидовых геометрий сама по себе не означала, что это были законные отпрыски математики. Над математикой довлел непреодолимый страх перед логической непоследовательностью – перед тем, что если довести эти геометрии до логического конца, это приведет к неразрешимым противоречиям. К 1870 годам итальянец Эудженио Бельтрами (1835–1900) и немец Феликс Клейн (1849–1925) показали, что неевклидовы геометрии последовательны в той же мере, что и евклидова. Однако это не решало более масштабный вопрос о прочности оснований евклидовой геометрии. Кроме того, вставал и важный вопрос о релевантности. Большинство математиков считали новые геометрии в лучшем случае забавными курьезами. Исторически сложилось так, что своим огромным авторитетом евклидова геометрия была обязана именно тому, что считалась описанием реального пространства, а неевклидовы, как поначалу казалось, вообще не имели отношения к физической реальности. Поэтому в глазах большинства математиков неевклидовы геометрии были не более чем бедными родственницами евклидовой. Анри Пуанкаре оказался немного гибче прочих, но даже он утверждал, что если бы люди попали в мир, где общепринята какая-нибудь неевклидова геометрия, – и тогда было бы «ясно, что мы не сочли бы более удобным перейти» с евклидовой геометрии на неевклидову. Поэтому назрели два вопроса: (1) можно ли воздвигнуть геометрию в частности и другие математические дисциплины в целом на прочном аксиоматическом логическом основании и (2) каковы отношения между математикой и физическим миром и есть ли они вообще?

Некоторые математики предпочли прагматический подход к логическим основам геометрии. То, что они считали абсолютными истинами, как выяснилось, зиждется скорее на житейском опыте, чем на строгих доказательствах, поэтому они от огорчения обратились к арифметике – математике чисел. Оказалось, что нужными инструментами для восстановления оснований геометрии на базе чисел обладает аналитическая геометрия Декарта, в которой точки на плоскости определялись упорядоченными парами чисел, а окружности – парами, удовлетворяющими определенному уравнению (см. главу 4) и так далее. Считают, что тенденцию к этому сдвигу описал немецкий математик Якоб Якоби (1804–1851), когда переиначил фразу Платона «Бог всегда остается геометром» – и у него получилось «Бог всегда остается арифметиком». Однако все эти усилия, можно сказать, ни к чему не привели – только переместили проблему в другую область математики. Великий немецкий математик Давид Гильберт (1862–1943) все же сумел показать, что евклидова геометрия непротиворечива в той же степени, что и арифметика, – а непротиворечивость последней к тому времени была уже бесспорно установлена.

Теперь отношения математики с физическим миром понимали по-новому. Долгие века интерпретация математики как инструмента для чтения мироздания постоянно получала ярчайшие подтверждения. Галилей, Декарт, Ньютон, все Бернулли, Паскаль, Лагранж, Кетле и другие ученые подвели под естественные науки математический фундамент, и это считалось явным свидетельством того, что природа обладает математической структурой. Резонно спросить: если математика не служит языком мироздания, почему же ей удается так замечательно описывать все на свете – от основных законов природы до человеческих черт?

Разумеется, математики отдавали себе отчет, что математика имеет дело лишь с довольно-таки абстрактными платоновскими формами, однако полагали, что это разумная идеализация реальных физических предметов и явлений. В сущности, ощущение, что книга природы написана на языке математики, укоренилось так глубоко, что многие математики наотрез отказывались даже рассматривать математические структуры и понятия, если те не были прямо связаны с физическим миром. Так обстояло дело, например, с колоритным персонажем по имени Джероламо Кардано (1501–1576). Кардано был состоявшимся математиком, известным врачом и прожженным игроком. В 1545 году он опубликовал одну из самых влиятельных книг в истории алгебры – «Ars Magna» («Великое искусство»). В этом всеобъемлющем трактате Кардано подробнейшим образом изучил решения алгебраических уравнений, от простого квадратного уравнения, где неизвестное появляется во второй степени (x 2), до кубических уравнений (x 3) и уравнений четвертой степени (x 4), чего до него никто не делал. Однако в классической математике количества часто интерпретировались как элементы геометрии. Например, значение неизвестной x определялось как отрезок данной длины, значение x 2 – как площадь квадрата, третья степень – x 3 – рассматривалась как объем куба со стороной данной длины. Поэтому в первой главе «Ars Magna» Кардано поясняет следующее (Cardano 1545).

Подробным образом мы рассмотрим лишь кубические уравнения, а об остальных лишь упомянем вскользь, хотя и в общем виде. Ведь поскольку positio [первая степень] относится к линии, quadratum [квадрат] к поверхности, а cubum [the cube] к объемному телу, с нашей стороны было бы очень глупо идти дальше этой точки. Природа такого не позволяет. Таким образом, будет показано, как решать все до куба включительно, но все остальное, что мы добавим, как по необходимости, так и из любопытства, будет лишь намечено и не более того.

Иначе говоря, Кардано утверждает, что поскольку физический мир в том виде, в каком мы его воспринимаем органами чувств, содержит всего три измерения, со стороны математиков было бы глупо заниматься более высокими измерениями или уравнениями более высокого порядка.

Похожие мнения высказывал английский математик Джон Валлис (1616–1703), по чьей работе «Arithmetica Infinitorum» («Арифметика бесконечных чисел») Ньютон учился методам анализа. В другой важной книге – «Treatise of Algebra» («Трактат по алгебре») – Валлис прежде всего делает следующую оговорку: «Природа, строго говоря, не допускает более трех (локальных) измерений»[107]. Затем Валлис уточнил.

Линия, пересеченная с другой линией, задаст плоскость или поверхность; если поверхность пересечется с линией, получится тело. Но если это тело пересечется с линией или эта плоскость с плоскостью, что тогда получится? Плоскостная плоскость? Это какой-то уродец, возможный даже в меньшей степени, чем химера [огнедышащее чудовище из греческой мифологии, помесь змея, льва и козла] либо кентавр [в греческой мифологии – существо с телом и ногами коня и торсом и головой человека]. Ведь длина, ширина и толщина полностью описывают пространство. Никакое воображение не способно представить себе четвертое локальное измерение помимо этих трех.

Опять же логика Валлиса понятна: нет никакого смысла даже воображать геометрию, которая не описывает реальное пространство.

В конце концов мнения начали меняться[108]. Впервые представления о том, что потенциальным четвертым измерением может оказаться время, появились у математиков XVIII века. В статье, которая так и называлась – «Dimension» («Измерение») – опубликованной в 1754 году[109], физик Жан Д’Аламбер (1717–1783) писал так.

Выше я указывал, что невозможно представить себе более трех измерений. Один талантливый человек, мой знакомый, полагает, что можно, однако, взирать на продолжительность как на четвертое измерение и что произведение времени на объем в некотором смысле четырехмерно. С этим представлением можно поспорить, однако мне представляется, что в нем помимо чистой новизны есть и здравое зерно.

Великий математик Жозеф Лагранж в 1797 году пошел еще на шаг дальше и сделал еще более смелое заявление (Lagrange 1797).

Поскольку положение точки в пространстве зависит от трех прямоугольных координат, эти координаты в задачах по механике понимаются как функции t [времени]. Таким образом, мы можем считать механику геометрией четырех измерений, а механический анализ – продолжением анализа геометрического.

Эти смелые идеи открыли дорогу расширению математики в области, которые раньше представлялись немыслимыми – в геометрии с любым количеством измерений, – и при этом вопрос о том, имеют ли эти геометрии какое бы то ни было отношение к физическому пространству, полностью игнорировался.

Может быть, Кант и заблуждался, когда полагал, что наше восприятие пространства следует исключительно евклидовым образцам, однако не приходится сомневаться, что мы в состоянии воспринимать естественно и интуитивно не более трех измерений. Мы можем относительно легко представить себе, как выглядел бы трехмерный мир в двумерной платоновской Вселенной теней, но выйти за пределы трех измерений способно лишь подлинно математическое воображение.

Назад Дальше