Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио 6 стр.


Некоторые математики, философы, специалисты по когнитивной психологии и другие «потребители» математики, например программисты, считают платоновский мир плодом воображения чересчур мечтательных умов (такую точку зрения и другие догмы мы еще обсудим подробнее на страницах этой книги, в главе 9). Более того, в 1940 году знаменитый историк математики Эрик Темпл Белл (1883–1960) сделал вот какое предсказание (Bell 1940).

Согласно пророкам, последний приверженец платоновских идеалов разделит участь динозавров к 2000 году. И тогда к математике, лишившейся мифического покрова этернализма, будут относиться именно как к той науке, какой она была всегда, – к языку, изобретенному людьми с определенной целью, которую они сами себе поставили. Последний храм абсолютной истины исчезнет, а вместе с ним исчезнет и ничто, которое в нем свято оберегали.

Предсказание Белла не сбылось. Хотя в науке и появились догмы, диаметрально противоположные платонизму (правда, противоположные, если можно так выразиться, с разных сторон), им не удалось полностью завоевать умы (и сердца!) всех математиков и философов, и раскол между ними в наши дни остался прежним.

Однако давайте предположим, что в один прекрасный день платонизм победил, и все мы стали убежденными платониками. Объясняет ли платонизм «непостижимую эффективность» математики при описании нашего мира? Не совсем. Почему физическая реальность ведет себя в соответствии с законами, обретающимися в абстрактном платоновском мире? Ведь в этом, в сущности, и состоит одна из загадок Пенроуза, а Пенроуз – убежденный платоник. Так что пока придется нам смириться с фактом, что даже если бы все мы стали сторонниками платонизма, тайна могущества математики осталась бы тайной. По словам Вигнера: «Невольно создается впечатление, что чудо, с которым мы сталкиваемся здесь, не менее удивительно, чем чудо, состоящее в способности человеческого разума нанизывать один за другим тысячи аргументов, не впадая при этом в противоречие».

Чтобы вполне оценить масштабы этого чуда, нам придется углубиться в жизнь и наследие самих чудотворцев – блистательных умов, которым мы обязаны открытием множества неимоверно точных математических законов природы.

Глава 3 Волшебники: наставник и еретик

Наука, в отличие от десяти заповедей, попала в руки человечества не в виде надписей на внушительных каменных скрижалях. История науки – это история взлетов и падений многочисленных теорий, умозаключений и моделей. Многие идеи, на вид весьма многообещающие, оказались фальстартами или вели в тупик. Многие теории, казавшиеся в свое время незыблемыми, впоследствии разваливались, не пройдя суровых испытаний дальнейших экспериментов и наблюдений, и оказывались забыты навеки. Даже незаурядный ум авторов некоторых концепций не гарантировал, что эти концепции не будут смещены со сцены. Например, великий Аристотель был убежден, что камни, яблоки и прочие тяжелые предметы падают вниз, поскольку ищут свое естественное место, а оно – в центре Земли. Когда эти тела приближаются к Земле, утверждал Аристотель, они ускоряются, поскольку рады вернуться домой. А вот воздух (и огонь) поднимаются вверх, поскольку естественное место воздуха – в небесных сферах. Каждому предмету приписывалась своя природа на основании того, к какой стихии, как считалось, они ближе всего – к земле, огню, воде или воздуху. Как говорил сам Аристотель (Aristotle ca. 330 BCa, b; см. также Koyré 1978).

Из существующих [предметов] одни существуют по природе, другие – в силу иных причин. … Простые тела, как-то: земля, огонь, воздух, вода – эти и подобные им, говорим мы, существуют по природе. Все упомянутое очевидно отличается от того, что образовано не природой: ведь все существующее по природе имеет в самом себе начало движения и покоя… … Природа есть некое начало и причина движения и покоя для того, чему она присуща первично, сама по себе… Согласно с природой [ведут себя] и эти [предметы], и все, что присуще им само по себе, например огню нестись вверх… (Пер. В. Карпова.)

Аристотель даже попытался сформулировать количественный закон движения. Он утверждал, что чем тяжелее предмет, тем быстрее он падает, причем его скорость прямо пропорциональна весу (то есть предмет вдвое тяжелее и падать будет со вдвое большей скоростью). Хотя житейский опыт и показывал, что это вполне разумно – ведь и правда кирпич ударяется о пол раньше, чем перышко, если бросить их с одной высоты, – однако Аристотель так и не подверг свое количественное утверждение более тщательной проверке. То ли ему это не приходило в голову, то ли он не считал необходимым проверить, действительно ли два кирпича, связанные вместе, падают вдвое быстрее, чем один кирпич. Галилео Галилей (1564–1642) придавал гораздо больше значения математике и эксперименту, а благополучие падающих яблок и кирпичей не слишком его заботило, и он первым заметил, что Аристотель глубоко заблуждался. При помощи хитроумного мысленного эксперимента Галилею удалось показать, что закон Аристотеля не имеет никакого смысла, поскольку логически непоследователен (Galileo 1589–92). Рассуждал Галилей следующим образом. Предположим, мы свяжем вместе два предмета, один легче, другой тяжелее. С какой скоростью упадет получившийся составной предмет по сравнению с двумя предметами, из которых он состоит? С одной стороны, согласно закону Аристотеля, можно сделать вывод, что упадет он с какой-то средней скоростью, поскольку более легкий предмет задержит падение более тяжелого. С другой, если учесть, что составной предмет на самом деле тяжелее каждой из своих частей, падать он должен даже быстрее, чем более тяжелый из двух компонентов, а это приводит к очевидному противоречию. Перо на Земле падает медленнее кирпича по одной простой причине – из-за сопротивления воздуха: если бы перо и кирпич падали с одной и той же высоты в вакууме, то коснулись бы пола одновременно. Это показали самые разные эксперименты, самый зрелищный из которых провел Дэвид Рэндольф Скотт, астронавт с «Аполлона-15» и седьмой человек, чья нога ступала на Луну: он одновременно выпустил из одной руки молоток, а из другой перо. Поскольку никакой существенной атмосферы у Луны нет, молоток и перо коснулись поверхности одновременно.

Но самое удивительное в ошибочном законе Аристотеля не то, что он неправильный, а то, что в нем за две тысячи лет никто не усомнился. Как удалось очевидно неверной идее достичь такого примечательного долголетия? Перед нами пример «идеального шторма» – уникального стечения неблагоприятных обстоятельств: совокупное действие трех сил обеспечило создание незыблемой догмы. Во-первых, налицо простой факт: в отсутствие точных средств измерения закон Аристотеля вроде бы соответствует жизненному опыту: листы папируса и правда парили в воздухе, а куски свинца – нет. Нужен был гений Галилея, чтобы заявить, что жизненный опыт и здравый смысл могут наталкивать на неверные выводы. Во-вторых, надо учесть, каким колоссальным весом обладала практически непревзойденная репутация и авторитет Аристотеля как ученого. Ведь именно он и не кто иной заложил основы западной интеллектуальной культуры. Аристотель буквально сказал все обо всем – будь то исследование всех природных явлений или фундамент этики, метафизики, политики и искусства. Мало того – Аристотель в некотором смысле научил нас, как именно следует думать, поскольку первым начал исследовать формальную логику. Сегодня с революционной и, можно сказать, совершенной системой логических выводов – силлогизмов – Аристотеля знаком, наверное, каждый школьник.

1. Всякий грек – человек.

2. Всякий человек смертен.

3. Следовательно, всякий грек смертен.

(Подробнее о таких логических конструкциях мы поговорим в главе 7.)

Третья причина невероятной жизнестойкости ошибочной теории Аристотеля заключается в том, что христианская церковь включила ее в свою систему догматов. А это надежно защищало предположения Аристотеля от любых попыток их оспорить.

Несмотря на значительный вклад в систематизацию дедуктивной логики, Аристотеля чтят не за достижения в математике. Пожалуй, достойно удивления, что человек, который, в сущности, основал науку, поскольку догадался, что к ней нужен систематический подход, так мало думал о математике (гораздо меньше Платона) и был настолько не силен в физике. Хотя Аристотель признавал важность численных и геометрических соотношений в науках, математику он по-прежнему считал абстрактной дисциплиной, никак не связанной с физической реальностью. Следовательно, хотя интеллектуальная мощь Аристотеля не подлежит сомнению, в мой список «математиков-волшебников» он не входит.

«Волшебниками» я буду называть тех уникумов, которые способны вытаскивать кроликов из буквально пустых шляп, тех, кто открыл связи между математикой и природой, которые раньше никому не приходили в голову, тех, кто способен наблюдать сложные природные феномены и вычленять из них кристально чистые математические законы. В иных случаях эти мыслители высшего порядка продвигали математику вперед даже благодаря своим наблюдениям и экспериментам. Вопрос о непостижимой эффективности математики при объяснении природных явлений и не возник бы, если бы не подобные волшебники. Загадка могущества математики прямо и непосредственно порождена чудесными озарениями этих исследователей.

Чтобы воздать должное всем великолепным физикам и математикам, благодаря которым сформировалась наша картина мироздания, одной книги не хватит. В этой и следующей главе я расскажу лишь о четырех титанах минувших веков – о научных звездах самой что ни на есть первой величины, которых без малейших сомнений можно назвать волшебниками. Первый волшебник в моем списке запомнился человечеству довольно странным поступком: он пробежал по улицам родного города в чем мать родила.

Дайте мне точку опоры, и я сдвину Землю

Когда историк математики Эрик Темпл Белл был вынужден принять решение, кого включить в число трех своих любимых математиков, то пришел к следующему выводу.

В любой список трех «величайших» математиков в истории обязательно вошел бы Архимед. Остальные два имени, которые обычно ставят в один ряд с Архимедом, – это Ньютон (1642–1727) и Гаусс (1777–1855). Если же принять в расчет относительное богатство – или бедность – математики и естествознания в соответствующие исторические периоды, когда жили эти титаны, и оценить их достижения в контексте того времени, многие, пожалуй, отдадут пальму первенства Архимеду.

Архимед (287–212 гг. до н. э.; на рис. 10 приведен бюст, который считают портретом Архимеда, но на самом деле это, вероятно, бюст какого-то спартанского царя) и в самом деле был Ньютоном и Гауссом своего времени – и отличался таким блестящим умом, живым воображением и поразительной интуицией, что и современники, и последующие поколения произносили его имя с почтением и благоговением. И хотя Архимед больше известен инженерными изобретениями, прежде всего он был математиком, и как математик он опередил свое время на века. К сожалению, о детстве и юности Архимеда и о его семье нам почти ничего не известно. Первую его биографию написал некто Гераклид, до нас она не дошла, и то немногое, что нам известно о его жизни и гибели, восходит к сочинениям римского историка Плутарха[21]. А Плутарх (ок. 46–120) больше интересовался победами римского военачальника Марцелла, который в 212 году до н. э. завоевал город Сиракузы, где жил Архимед (Plutarch ок. 75). К счастью для истории математики, Архимед во время осады Сиракуз доставил Марцеллу столько хлопот, что три величайших историка того времени – Плутарх, Полибий и Тит Ливий – не могли его не упомянуть.


Рис. 10


Архимед родился в Сиракузах – в то время это была греческая колония на Сицилии[22]. По его собственным словам, он был сын астронома Фидия, о котором почти ничего не известно, кроме того, что он оценил соотношение диаметров Солнца и Луны. Вероятно, Архимед был в каком-то родстве и с царем Гиероном II, который и сам был незаконнорожденным сыном одного аристократа (от рабыни-наложницы). Какие бы узы ни связывали Архимеда с царским родом, и сам Гиерон, и его сын Гелон относились к ученому с большим уважением. В юности Архимед прожил некоторое время в Александрии (свидетельства об этом обсуждаются в Dijksterhuis 1957), где изучал математику, а затем вернулся в Сиракузы и посвятил свою жизнь научным изысканиям в разных областях знания.

Архимед был математиком из математиков. Согласно Плутарху, он, «считая сооружение машин и вообще всякое искусство, сопричастное повседневным нуждам, низменным и грубым, все свое рвение обратил на такие занятия, в которых красота и совершенство пребывают не смешанными с потребностями жизни» (здесь и далее пер. С. Маркиша). Увлечение абстрактной математикой и поглощенность ею выходили далеко за рамки восторга, с которым относились к этой науке другие ученые. Вернемся к Плутарху.

И нельзя не верить рассказам, будто он был тайно очарован некоей сиреной, не покидавшей его ни на миг, а потому забывал о пище и об уходе за телом, и его нередко силой приходилось тащить мыться и умащаться, но и в бане он продолжал чертить геометрические фигуры на золе очага и даже на собственном теле, натертом маслом, проводил пальцем какие-то линии – поистине вдохновленный Музами, весь во власти великого наслаждения.

При всем презрении к прикладной математике и пренебрежении, с каким сам Архимед относился к собственным инженерным идеям, поразительные изобретения стяжали ему даже большую славу, чем математический гений.

Самая известная легенда об Архимеде лишь дополняет образ типичного рассеянного математика. Эту забавную историю первым рассказал римский архитектор Витрувий в I веке до н. э. Царь Гиерон пожелал посвятить бессмертным богам золотой венец. Когда венец доставили царю, вес его равнялся весу золота, выделенного на его создание. Тем не менее царь заподозрил, что некоторое количество золота заменили серебром того же веса. Поскольку сам он не мог обосновать свои подозрения, то обратился за советом к великому математику Архимеду. Легенда гласит, что в один прекрасный день Архимед улегся в ванну, поглощенный размышлениями, как же разоблачить мошенничество с венцом. И вот, погрузившись в воду, он вдруг понял, что его тело вытесняет определенный объем воды – вода выплеснулась за край ванны. И у него мгновенно созрело решение[23]. Архимед вне себя от радости выскочил из ванны и нагим пробежал по улицам города с криком: «Эврика, эврика!» («Я нашел, я нашел!»)

Другое известное высказывание Архимеда – «Дайте мне точку опоры, и я сдвину Землю» – в наши дни в той или иной форме цитируется более чем на 150 000 веб-страниц, согласно поисковику «Google». Это смелое заявление, похожее на девиз крупной корпорации, приводили и Томас Джефферсон, и Марк Твен, и Джон Кеннеди, оно встречается даже в поэме лорда Байрона[24]. Архимед много занимался исследованием задачи о перемещении тела заданного веса с помощью заданной силы, и его крылатая фраза, очевидно, знаменует кульминацию этих изысканий. Плутарх рассказывает, что царь Гиерон потребовал, чтобы Архимед продемонстрировал свою способность манипулировать тяжелым грузом при помощи малой силы, и тогда Архимед, задействовав составной блок, спустил на воду судно с полным грузом. Плутарх восхищенно добавляет, что корабль шел «так медленно и ровно, точно… плыл по морю». Эту же легенду с незначительными вариациями мы встречаем и в других источниках. Конечно, Архимед едва ли сумел и в самом деле передвинуть целый корабль при помощи доступных в то время механических устройств, однако легенды не оставляют места для сомнений, что ученый и вправду устроил эффектную демонстрацию какого-то изобретения, позволявшего перемещать тяжелые грузы.

Архимеду принадлежит множество других мирных изобретений – например, гидравлический винт для подъема воды и планетарий, где показывалось движение небесных тел, – однако в древности он больше всего славился своей ролью в обороне Сиракуз от римских завоевателей.

Историки всегда любили войны. Именно поэтому события, связанные с осадой Сиракуз римскими войсками в 214–212 гг. до н. э. подробнейшим образом описаны в трудах целого ряда историков. Римский военачальник Марк Клавдий Марцелл (ок. 268–208 гг. до н. э.), к тому времени стяжавший себе изрядную славу, предвкушал скорую победу. Однако он, очевидно, не принял в расчет упрямства царя Гиерона, которому к тому же помогал гений математики и инженерного дела. Плутарх живо и ярко описывает, какой хаос посеяли в рядах римских воинов боевые машины Архимеда.

Но тут Архимед пустил в ход свои машины, и в неприятеля, наступающего с суши, понеслись всевозможных размеров стрелы и огромные каменные глыбы, летевшие с невероятным шумом и чудовищной скоростью, – они сокрушали всё и всех на своем пути и приводили в расстройство боевые ряды, – а на вражеские суда вдруг стали опускаться укрепленные на стенах брусья и либо топили их силою толчка, либо, схватив железными руками или клювами вроде журавлиных, вытаскивали носом вверх из воды, а потом, кормою вперед, пускали ко дну либо, наконец, приведенные в круговое движение скрытыми внутри оттяжными канатами, увлекали за собою корабль и, раскрутив его, швыряли на скалы и утесы у подножия стены, а моряки погибали мучительной смертью. Нередко взору открывалось ужасное зрелище: поднятый высоко над морем корабль раскачивался в разные стороны до тех пор, пока все до последнего человека не оказывались сброшенными за борт или разнесенными в клочья, а опустевшее судно разбивалось о стену или снова падало на воду, когда железные челюсти разжимались.

Архимедовы изобретения вселяли такой ужас, что «римляне… едва заметив на стене веревку или кусок дерева… поднимают отчаянный крик и пускаются наутек в полной уверенности, будто Архимед наводит на них какую-то машину». Эти механизмы произвели сильнейшее впечатление и на самого Марцелла, который сказал своим военным инженерам: «Не довольно ли нам воевать с этим Бриареем [сторуким великаном, сыном Урана и Геи] от геометрии, который вычерпывает из моря наши суда, а потом с позором швыряет их прочь и превзошел сказочных сторуких великанов – столько снарядов он в нас мечет!»

Назад Дальше