Мозгу такое делать не впервой. Все младенцы видят мир в полном соответствии с законами оптики – перевернутым. Но потом мозг дает команду, и вскоре картинка переворачивается как надо. Но переворачивается она в мозгу, а не в глазу.
Ну, а теперь ответим на заданный ранее вопрос – отчего дальние предметы кажутся нам меньше.
Они кажутся нам меньше, поскольку занимают на экране (на сетчатке) меньше места! Отчего же? А оттого, что при удалении меняется угол зрения. Чем меньше места на сетчатке занимает изображение, тем меньше нам кажется предмет.
Далекие предметы дают маленькое изображение. Потому что угол 2 меньше угла 1.
Глава 4 Другой свет
Авот теперь можно слегка задуматься и задаться таким вопросом… Когда мы говорили о звуковых колебаниях, мы узнали, что не все колебания атмосферы человек в состоянии услышать – есть инфразвуки и ультразвуки, которые ухо «не берет». Может, и со световыми колебаниями то же самое?
Да!
Со световыми колебаниями ситуация такая же – есть ультрасвет и инфрасвет, которые глаз не берет. Только называются они чуть по-другому – ультрафиолетовым и инфракрасным излучением. Солнце эти лучи исправно испускает, но мы их не видим.
Те колебания, частота которых превышает частоту фиолетового цвета, называются ультрафиолетовыми. А те, частота которых меньше частоты красного света, называются инфракрасными. Можно и по-другому сказать:
коротковолновое излучение – это ультрафиолет, а длинноволновое – инфракрасное.То есть радуга на небе на самом деле имеет не семь цветов, а больше, просто другие цвета мы не видим.
Кстати, не все земные существа такие убогие, как люди. Пчелы, например, видят ультрафиолет, а змеи инфракрасное излучение.
Невидимый свет расположен по краям от видимого
Потемнение кожи, которое мы называем загаром, вызывается ультрафиолетовым излучением. В небольших дозах оно весьма полезно, поскольку именно под воздействием ультрафиолета наша кожа вырабатывает витамин D. А в вот больших дозах ультрафиолет опасен – он не только вызывает солнечные ожоги, но и может привести к смертельным заболеваниям кожи, повредить зрение. Поэтому особенно загаром увлекаться не стоит, а летом лучше носить темные очки, чтобы не было ожога сетчатки – того экранчика в глазу, на который проецируется изображение.
Как видите, ультрафиолет биологически очень активен. С помощью ультрафиолетовых ламп убивают вредные микробы, обеззараживая воду в бассейнах и воздух в помещениях больниц.
По счастью, от избыточного ультрафиолета легко защититься, его практически не пропускает обычное оконное стекло.Поэтому для производства ультрафиолетовых ламп приходится делать специальное стекло – кварцевое.
Теперь скажем пару теплых слов об инфракрасном излучении. Про теплые слова я сказал не зря, ведь инфракрасное излучение иногда еще называют тепловым. Мы глазами его не видим, но если оно достаточно интенсивное, мы можем почувствовать его кожей как тепло.
И что это значит?
А то, друзья мои, что мы с вами теперь знаем все способы передачи тепла от одного тела к другому! Ну-ка, вспоминайте, первую часть книги. Мы там говорили, что температура и тепло – это просто мера скорости молекул. И я рассказывал, как передается тепло: более энергичные, то есть более быстрые – «горячие» – молекулы нагретого тела барабанят по более медленным – «холодным» – молекулам другого тела, тормошат их, расталкивают, отдавая им свою энергию. И постепенно, постепенно скорости молекул в горячем и холодном телах уравниваются. Тогда мы говорим:
– О! Отлично! Температура сравнялась! Холодное нагрелось, горячее остыло.
Этот способ теплопередачи называется теплопроводностью.
Могучие умы выделяют в отдельную категорию такую разновидность теплопередачи, как перемешивание или, по-научному говоря, конвекцию. Конвекция – это когда большие массивы «горячих» молекул перемешиваются механическим путем с большими массивами «холодных». Лучший пример тут – батарея отопления. Она стоит под окном и нагревает воздух вокруг себя. А поскольку теплый воздух легче холодного, он поднимается вверх без всякого воздушного шара, и на его место к батарее снизу, от пола подсасывается холодный воздух. Который тоже нагревается о батарею и улетает вверх. Таким образом вкруговую идет постоянное перемешивание воздуха в комнате. Конвекция ускоряет процесс теплообмена в больших объемах.
Конвекция – это очень просто. Обычное перемешивание
И вот теперь мы узнали еще один способ передачи тепла – лучами, то есть волнами инфракрасного спектра. Попадая на какое-то тело, инфракрасные лучи его нагревают, то есть раскачивают молекулы, придавая им скоростенки.
Не каждый современный ребенок видел такую штуку, как на этом фото. Сейчас больше в моде другие обогреватели. А раньше такие вот рефлекторы пользовались большой популярностью. В чем суть этого великого изобретения? На керамический патрон наматывается металлическая спиралька из специального сплава. Через нее пропускают ток, и спираль нагревается докрасна и нагревает керамический конус. При этом спираль и керамика немного излучают в видимом диапазоне (красный свет) и очень сильно в невидимом – инфракрасном. Круглый металлический рефлектор фокусирует эти лучи, направляя их сплошным потоком вперед. И человек чувствует тепло или даже жар, если на него направить отражатель. Шикарно, дети мои, шикарно!
Теперь, ознакомившись с качественными характеристиками, нам осталось только дать численные значения ультра-и инфрасвета. Кстати, слово «инфрасвет» никогда нигде и никем не употребляется, это я уж так, хулиганю. Всегда говорят почему-то длинно – «инфракрасное излучение». А вот волны с другой стороны спектра почему-то имеют свое сокращение – «ультрафиолет». Загадки языка.
Итак, ультрафиолетовый свет находится на частотной шкале «правее» фиолетового и простирается от 790 до 30000 ТГц. А инфракрасный, соответственно, левее и его значения лежат в значениях от 1 до 400 тетрагерц.
Раздумчивый читатель, который смотрит на два хода вперед, может в этом месте книги начать ожесточенно чесать затылок, организуя таким образом повышенный приток крови к мозгу для усиления умственной деятельности, ибо в голове его уже зреют два вопроса:
– А еще левее инфракрасного и правее ультрафиолетового бывают волны?
– И волнами чего является свет? Ну, в смысле что колеблется? Морские волны – это колебания воды. Звуковые – воздуха. А тут? Ответит нам наконец автор или нет?
Отвечаю по порядку.
Да. И левее, и правее инфра- и ультрасветовых колебаний тоже существуют волны. А почему бы им не быть? Направо от ультрафиолета частоты растут, а длины волн, соответственно, падают. А влево от инфракрасного частоты падают, а длины волн растут.
? И что же находится правее ультрафиолета с частотой выше ультрафиолета?А там, милые мои, находятся уже знакомые нам рентгеновские лучи. Оказывается, они – то же самое, что свет, только частоты другие. Вредные для здоровья рентгеновские лучи имеют частоты от 30000 ТГц до 600000 ТГц. Те рентгеновские лучи, что подлиннее (меньше частота), называют мягким рентгеном. А высокочастотные рентгеновские лучи – жестким.
Далее, еще правее располагается также известное нам гамма-излучение. Оно не просто вредное, оно убийственное.
Теперь посмотрим в другую сторону. Какие волны лежат левее инфракрасных? А это хорошо нам знакомые радиоволны! Они условно делятся на:
– сверхдлинные (от 0 до 3 килогерц, длина этих волн – тысячи километров)
– длинные (с частотой от 3 до 30 килогерц и километровой длиной)
– средние (от 300 КГц до 3 мегагерц, гектометровые)
– короткие (от 3 МГц до 30 МГц, декаметровые)
– метровые (30 МГц – 300 Мгц)
– дециметровые (300 МГц – 3 ГГц)
– сантиметровы или СВЧ (3 ГГц – 30 ГГц)
– миллиметровые или микроволны (30 ГГц – 300 ГГц)
Практически все эти волны человечеством так или иначе используются.
На сверхдлинных волнах были полуэкспериментальные попытки сделать дальнюю связь с подводными лодками, поскольку длинные волны хорошо проходят сквозь воду.
На длинных, средних и коротких волнах осуществляется обычная радиосвязь.
Метровые и дециметровые – это передача изображения в телевидении.
Сантиметровыми волнами разогревают пищу в печках-СВЧ.
Миллиметровые волны пытаются использовать в медицине для лечения.
Как видите, природа всех этих колебаний, начиная с самого длинного и «ленивого» радиодиапазона с тысячекилометровыми волнами и заканчивая самым коротким и жестким проникающим излучением, одинакова.
Сантиметровыми волнами разогревают пищу в печках-СВЧ.
Миллиметровые волны пытаются использовать в медицине для лечения.
Как видите, природа всех этих колебаний, начиная с самого длинного и «ленивого» радиодиапазона с тысячекилометровыми волнами и заканчивая самым коротким и жестким проникающим излучением, одинакова.
Часть этих колебаний мы можем воспринимать непосредственно своими органами чувств —я имею в виду тот короткий кусочек шкалы, который мы называем видимым светом. И теперь остается только ответить на вопрос, что же это за колебания, то есть что же именно колеблется, раз свет – это волна.
Тут я рекомендую вам вспомнить, с какого момента книги мы начали этот длинный разговор о волнах. Не листайте книгу, я напомню ход событий.
Мы сначала узнали, из чего собирается вещество. Оно собирается всего из трех частиц – электрон, протон и нейтрон. Две из них электрически заряженные. Мы полюбили таблицу Менделеева, где сгруппированы все возможные атомы, сделанные из трех указанных элементарных частиц. Мы узнали на примере воды и соли, как собираются из атомов молекулы. (Подробности этой сборки изучает наука химия.)
Затем выяснилось, что, помимо вещества, в мире существует еще и некое невидимое и неосязаемое поле. Оно неразрывно связано с веществом! Электрическое поле связано с электрически заряженными частицами. Магнитное поле магнита порождается движением электрически заряженных частиц. А вообще-то разделять их бессмысленно, поскольку магнитные и электрические проявления поля – это как орел и решка у монеты. Ну не бывает же отдельно орла и решки, это просто две стороны одной денежки. Точно так же не бывает и отдельного магнитного и электрического поля. Это две стороны единого электромагнитного поля. Просто иногда нам видится только одна из его сторон. Но стоит сделать шаг в сторону… Шаг в сторону – это движение. А движение сразу приводит к «мерцанию сторон» поля: движущееся магнитное порождает электрическое, движущееся электрическое порождает магнитное. И пошел разбег кругов.
Затем мы подвесили на ниточке магнит, а потом заряд и качнули их, заставив двигаться, колебаться и распространять по своему полю волны.
Догадались? Те самые волны, которые в частотном диапазоне простираются от нуля до бесконечности, – радиоволны, свет, ультрафиолет, рентген, гамма – это просто электромагнитные волны. То есть колебания электромагнитного поля. Оно пронизывает всю вселенную. Просто где-то поле «гуще», а где-то истончается до нуля.
Ниже нарисована шкала этих волн, которую поэтически можно назвать «таблицей Менделеева для электромагнитных колебаний».
Полная шкала электромагнитных колебаний
Часть III Сумасшедшая физика
Все настолько прекрасно, что и желать больше нечего! Не так ли?
Мы знаем, как устроено вещество, с конструкторской точностью. То есть можем просто сделать игрушечный конструктор из трех деталек (протон, нейтрон, электрон) и собрать из него все атомы таблицы Менделеева – химические элементы. А из этих элементарных веществ далее собрать уже любую молекулу сложного вещества.
Мы также знаем, что в мире, кроме вещества, существует еще и поле. Точнее, поля. Невидимые, но реальные. Гравитационное, например, поле, которое обеспечивает нам стабильное присутствие на нашей планете, а нашей планете – вращение вокруг Солнца, что не только полезно, но и крайне приятно. А то бы мы все умерли.
Кроме гравитационного, есть еще электромагнитное поле, которое распространяют вокруг себя заряженные частицы (электрон да протон). Оно обеспечивает нам всю химию, потому что атомы собираются в молекулы, а молекулы тяготеют друг к другу (дабы предметы не разваливались), только и исключительно с помощью электромагнетизма. Других причин нет.
И еще в мире есть волны. А почему бы им не быть? Если что-то колеблется, оно толкает вокруг себя среду, в которой находится, распространяя по ней упругие колебания. Можно вызвать акустические колебания, то есть звуковые, если колебать, например, струну. А можно вызвать колебания электромагнитного поля, если колебать зарядики. Частота этих колебаний имеет диапазон широчайший, и мы почти всеми частотами можем пользоваться. Даже опасное рентгеновское излучение дозированно используем в медицинских целях – чтобы свои туловища просвечивать и искать разные болезни, проглоченные гайки и переломы.
Ну, казалось бы, чего еще надо? Живи да радуйся! Все так хорошо в мире стало, так понятно… Подобные благодушные настроения царили у физиков сто лет назад. Правда, тогда еще не был открыт нейтрон, но свет в электрических лампах уже горел без всякого нейтрона, телефон работал, автомобили бегали, подводные лодки плавали, рентгеном людей просвечивали, а химики колдовали над своими колбами и получали приличные результаты. Умеем, когда захотим!
Тем неожиданнее случилась катастрофа…
Глава 1 Какой удар со стороны классика!
Мир рухнул. Привычный мир физиков обрушился буквально в одночасье. Вот только что в физическом раю пели соловьи благолепия, пухли, как на дрожжах, жирные розы удовлетворенности, распространяя окрест благоуханные ароматы достижений. И вдруг бац – какая неприятность! Привычный рай трещит и разваливается на части, а из разломов начинают торчать невидимые ранее проблемы.
Я ничуть не шучу, мои маленькие друзья и товарищи покрупнее. Какие могут быть шутки о катастрофе мировоззрения!
Весь девятнадцатый век физика развивалась такими бурными темпами и добилась таких успехов, что гордость физиков за свою вотчину была вполне обоснованной. Удалось создать стройную непротиворечивую картину мира, в основе которой лежала ньютоновская механика. Скорости, траектории, законы движения массивных тел… Все это можно было определить, просчитать и, зная все координаты, массы и скорости тел, предсказать, где они окажутся в любой момент времени в будущем.
Иными словами, мир представлялся фатальным. Что такое фатализм? Всеобщая предопределенность – чему суждено случиться, того не миновать, как ни пытайся. От судьбы не уйдешь. Написано тебе на роду утонуть, значит утонешь… Именно такую «окаменевшую» и неизменяемую картину мира давала ньютоновская механика, в которой конечные координаты и другие параметры любого тела, любой частицы жестко детерминировались (предопределялись) начальными условиями движения. Понятно, что на практике данных обо всех частицах вселенной у нас нет, но в теории мир был именно таким – железно заданным формулами физических закономерностей.
Правда, о философской подоплеке своих механистических воззрений физики задумывались не особо, им просто нравилась та цельная картина мира, которая вырисовывалась к концу ХIХ века. Как движутся планеты, понятно. Законы распространения волн известны. Оптика позволяет делать очки и телескопы. Уравнения Максвелла, описывающие электромагнитное поле, уже написаны. Электротехника развивается бурными темпами. Плохо ли?
И когда о ту пору юный абитуриент пришел к своему профессору – физику Филиппу Жолли и сказал ему, что мечтает связать свою жизнь с физикой, тот томно отмахнулся:
– Ах, молодой человек! Физика, как наука, в общем и целом завершена, за исключением нескольких несущественных мелочей. Стоит ли вам портить себе жизнь? Займитесь лучше юриспруденцией или музыкой.
Этого юного абитуриента, который действительно отлично играл на фортепиано и даже был автором одной оперетты, звали Макс Планк. Это имя сегодня известно всем, кто учился в школе или хоть что-то слышал о физике.
Макс Планк – человек, который, уцепившись за те самые «несущественные мелочи», о которых говорил благодушный Жолли, взломал здание старой физики – и сам испугался содеянного.
Макс Планк – человек, основавший здание новой физики – квантовой.
Макс Планк, придумавший кванты, – человек, который сам в кванты не верил.
Именем Макса Планка названа одна из самых фундаментальных констант современной физики, описывающая базис нашего мира – «постоянная Планка». А на могиле Макса Планка вместо дат его жизни и смерти выбиты совсем другие цифры – значение постоянной Планка.
Планк прожил долгую нелегкую жизнь, пересекшую две мировые войны. Он пережил обоих своих сыновей, один из которых погиб в Первую мировую, а второй был в начале 1945 года повешен нацистами за участие в покушении на Гитлера. Дом Планка вместе с огромной библиотекой сгорел от попадания бомбы и почти 90-летний старик, в чем был, вместе с женой пешком отправился в никуда.
Знал ли тот юный мальчик Макс, стоявший перед маститым профессором Жолли – уважаемым ученым, который родился в эпоху Наполеоновских войн, сотрясавших Европу, – что ему самому, Максу Планку, придется пережить две огромные войны, потерять детей и перевернуть физику? Не знал, конечно. И знать не мог в принципе, ибо тот переворот в физике, коему Планк дал начало, убедительно показал человечеству: мир нефатален, вы можете изменить будущее! Мир принципиально непредсказуем. Он квантовый. И случайность вшита в самую основу бытия.