Представьте себе ровно натянутую и разлинованную в клеточку резиновую поверхность – это пространство без гравитирующих масс. Все линии и углы тут прямые. Мы имеем модель двумерной поверхности, то есть плоскость – на плоскости есть только ширина и длина, но нет высоты. Невесомый шарик (фотон) будет катиться по этому прямому плоскому пространству прямолинейно. Такое прямое пространство называется эвклидовым в честь греческого геометра Эвклида.
Если теперь на эту плоскость положить массивный шар в виде тяжелой планетки, резиновая поверхность прогнется. Нарисованные на поверхности линии и углы растянутся и искривятся, причем чем ближе к шару, тем больше. И если снова запустить по этой резине какой-нибудь маленький пробный шарик, прямая траектория его движения неподалеку от тяжелого шара изогнется вслед за изогнутой поверхностью резины, а если скорость шарика невелика, он может вообще скатиться в прогнутую большим шаром ямку. Как бы притянется к нему. Но это «притяжение» лишь есть следствие изогнутости нашего двумерного пространства.
То же самое происходит и с нашим трехмерным пространством, просто его искривление представить себе не так просто, как искривление двумерной поверхности, то есть плоскости.
Таким образом, каждая масса в нашем мире, начиная от самых легких частиц до самых тяжелых звезд и галактик, формирует вокруг себя искривление пространства, которое перестает быть прямым, эвклидовым.
Искривленное двумерное (плоское) пространство, двигаясь по которому пробный шарик попадает в яму изогнутого пространства.
Но это еще не все хитрости старика Эйнштейна. По его теории, масса не только искривляет вокруг себя пространство, но еще и замедляет вблизи себя время, и чем больше масса – тем больше. Соответственно, возле Солнца время течет немного медленнее, чем около Земли.
Несмотря на все эти совершенно неочевидные вещи, теория Эйнштейна прошла все возможные экспериментальные проверки, и эффекты искривления пространства и замедления времени были зафиксированы приборно. Теория была блистательно доказана!.. Конечно, для тех масс, с которыми мы обычно имеем дело и на которых живем (Земля), эффект искривления пространства и времени слаб, но при должном старании ловится. А уж тут физики постарались, уверяю вас! И потому сегодня теория относительности является одной из главных и самых прекрасных драгоценностей в сокровищнице физической науки. Периодически взволнованные физики берут эту теорию дрожащими ручонками и, не отрывая глаз, тихо вздыхают, любуясь ею, будучи не в силах перенести восхищения.
Как физики от реальности отказались.Физика отличается от математики тем, что описывает не голые цифровые абстракции, а конкретный мир, хотя и с помощью математики. За математическими формулами в физике всегда стоит какая-то реальность, и если формулы эту реальность описывают неправильно, значит теория не верна, нужно подобрать другие формулы. Или даже не подобрать, а вывести, построив у себя в голове некую наглядную модель того, как происходят физические процессы – течет вода, летит тело под действием силы тяжести, нагревается тело, преломляется луч. Если выведенная формула соответствует результатам экспериментов, значит, наглядная модель, возникшая в голове теоретика, соответствует действительности – по крайне мере до определенных пределов.
Однако все было так только до начала ХХ века, поскольку ранее физика занималась изучением в основном макромира, а потом перешла к изучению микромира. И вот в физике микромира наглядность начала пропадать. Представить себе частицу в виде маленького шарика – легко. Представить себе волну – тоже не сложно. А вот как представить себе волно-частицу? Как представить, что один электрон прошел одновременно через две щели? Как представить себе виртуальный квант или возбужденный вакуум?..
В нашем макромире подобных объектов нет. В этом и состоит проблема современной физики: человек есть животное, приспособленное к жизни в мире твердых тел, то есть в макромире. То, к чему мы привыкаем с детства, живя в этом мире твердых тел, мы и считаем наглядным, то есть понятным. Наглядность есть функция привычки, не более. А проникновение силою ума в микромир лишило физиков наглядных картинок, оставив в их инструментарии только абстрактное мышление и чистую математику. У нас нет и не может быть представлений о микромире: наше тело заточено под выживание в макромире.
Но так больно было расставаться с наглядностью! Так трудно было расставаться с привычным и естественным! Например, для нас совершенно естественно, что параллельные линии не пересекаются. Однако для нас это естественно только потому, что мы привыкли жить в так называемом эвклидовом пространстве, где работает привычная школьная геометрия. Однако физики уже оперируют и другими геометриями – геометриями искривленных пространств, в которых параллельные вполне себе пересекаются.
– Физика изучает мир и потому не может обойтись без наглядности, – считали физики старой школы. – Ведь за формулами всегда стоит какая-то реальность! Нужно просто придумать такие модели, которые бы реальность адекватно описывали и давали возможность ее понять не только на уровне формул. Вот мы же может формулами описать сжатие пружины или полет пули, и можем эти процессы наглядно себе представить. Давайте же найдем такие наглядные модели, которые бы давали наглядное представление о событиях в микромире.
– А это невозможно, – жестко возражало новое, молодое поколение физиков. – Как можно представить себе «вектор состояния» или «волновую функцию»? Придется вам теперь обходиться только формулами! Хе-хе.
– Какие же вы все-таки мерзкие! – обижались старички. – Ведь быть такого не может, чтобы природа сама о себе чего-то не знала. Скорее всего это мы о ней чего-то еще не успели узнать, раскрыть каких-то ее секретов, поэтому нам и кажется, что в природе микромира царят случайность и неопределенность и что летящий электрон находится одновременно во всех точках пространства. А на самом деле – он где-то в одном месте. Просто нужно дальше изучать мир и постичь наконец скрытую пока еще от нас реальность. Потому как то, что получается из формул, просто противоречит интуиции!
– Да нет никакой скрытой реальности, дедки! – цинично смеялось над физиками старого поколения поколение молодое. И называло стремление стариков к наглядности «наивным реализмом». – А что касается интуиции, то она всего лишь порождение макромира и наших чувств, завязанных на макромир, забудьте про нее.
И вы уже знаете, что среди обиженных дедков были такие зубры, такие столпы физики, как Планк, де Бройль и Эйнштейн, которые сами стояли у истоков мировоззренческой катастрофы. Эти люди растерянно пытались найти хоть какие-то наглядные модели, чтобы описать корпускулярно-волновой дуализм и прочие чудеса микромира. А новое поколение только рукой махало, даже не пытаясь найти каких-то картинок, довольствуясь только формулами.
Об этом драматичном споре один из физиков новой волны – Макс Борн высказался так: «Нашу полемику нельзя назвать чисто научной дискуссией. Скорее, она напоминала религиозные споры времен Реформации. Так что надежд на примирение мало». И в общем, был прав. Мировоззренческая катастрофа была такой, что кое-кто из физиков на этой почве даже увлекся древнеиндийской философией, как это сделал, например, Эрвин Шредингер.
Усугубило катастрофу и то обстоятельство, что физике пришлось отказаться не только от концепции физической реальности, но и от концепции объективности! Раньше считалось, что есть объективный мир и есть субъект, то есть человек, который этот мир изучает. Объективность же мира в том и заключается, что он от субъекта никак не зависит. Он просто существует, вне зависимости от того, изучаем мы его или нет и кто этим занимается – Иванов, Петров или Сидорчук. Законы природы от нас не зависят, мы их просто познаем…
Но законы микромира оказались столь странными, что в них наблюдение субъекта за реальностью очень даже влияло на реальность! Объективная реальность оказалась зависящей от субъекта!
Вот пример.
Двухщелевой эксперимент с электроном, который пролетает в две щели и рисует на экране интерференционную картину. Итак, один электрон пролетел в две щели. «А может, все-таки в одну?» – с надеждой вопрошали физики-классики. Что ж, можно проверить. Можно неподалеку от одной из щелей поставить регистратор, который будет засекать, пролетел в эту щель электрон или нет. Если регистратор электрон засечет – значит, он действительно пролетел в эту щель. А если не засечет – значит в другую!
Ну, и что же вы думаете? Как только ставят регистратор, как только начинают проводить наблюдение, так электрон и вправду начинает пролетать только в одну щель – либо в эту, либо в соседнюю. Но при этом интерференционная картинка на экране исчезает!
Интерференция исчезает, когда электрон «узнает», что мы за ним наблюдаем, вот в чем проблема. Электрон начинает вести себя, как обычная частица. А когда не наблюдаем (выключаем прибор регистрации), он снова ведет себя, как волна, и картинка сложения волн на экране возникает снова.
Как неожиданно…
И одна из главных физических формул микромира, которая описывает так называемый «вектор состояния», она ведь описывает математическими значками не только само состояние изучаемой квантовой системы, но и наши знания о ней. Они включены в формулу. Ну, разве могли физики старой школы так легко с этим смириться?
А уж когда физики-теоретики стали изучать вакуум и самые мелкие структуры бытия, последние остатки наглядности в виде мысленных картинок или рисунков растворились и остались одни сплошные формулы.
Что поделаешь, миром руководит математика!
Глава 3 Откуда берется время
Те, кто не поленился и прочитал информационный блок о теории относительности, наверняка остался впечатлен фокусами со временем. Как это так – время замедляется при росте скорости?! Что это означает? А это означает, что все процессы в месте замедления времени идут медленнее.
– Но позвольте! – скажет умный человек в круглых очках. – Если все процессы идут медленнее, и часы в том числе, то откуда мы знаем, что время замедлилось? Мы этого просто не заметим, ведь замедлились все процессы!
Верно. Внутри такой системы, в которой замедлилось время, никто ничего не заметит. Это будет заметно только снаружи. Ведь все познается в сравнении! Размеры предметов измеряются методом сравнения их с линейкой, временные промежутки – путем сравнения их с промежутками времени, отмеряемыми часами. А если не с чем сравнивать, то как узнаешь?
Поэтому о замедлении времени в какой-то системе может судить только внешний наблюдатель, находящийся вне этой системы. Вот он как раз и может сказать:
– Ой! А у вас часы идут медленнее. И стареете вы как-то медленнее, чем я. И двигаетесь. И думаете. Вы, наверное, тормоз!
В общем, теория относительности показала, что относительны не только масса и пространство, но и время: масса тела с увеличением скорости растет, линейные размеры тела (то есть само пространство) сокращается, а время замедляется.
? Но что такое время?Немало философов ломало голову о природе времени. Физики ньютоновской эпохи полагали: вот есть материя, из которой сделано все; есть пространство как вместилище всех вещей; и есть время как мера длительности происходящих процессов. Материя – это актеры, сцена – это пространство, а длительность спектакля – это время. Причем пространство и время останутся, даже если из мира убрать материю.
Современная физика полагает иначе: есть только квантовое сущее, которое проявляет себя в трех ипостасях – как материя, пространство и время. Есть бескрайний океан вакуума, в котором все происходит и волнения которого мы воспринимаем как вещество и поле.
На бытовом уровне с веществом все понятно. Мы и сами вещество и имеем дело с веществом всю жизнь. С пространством тоже нет непоняток – если далеко, то лучше лететь на самолете: он быстрее перемещается в этом самом пространстве. И вообще, если бы не пространство, где бы тогда помещалось вещество? Тут у нас непонимания нет. Все очень просто.
А вот время…
Оно – что? Как его пощупать? Можно ли его выделить в некую отдельность? Почему люди говорят о стреле времени, о том, что оно проходит безвозвратно, и что прошлого не вернуть?
Я вам на эти вопросы отвечу сразу: никакого «отдельного» от материи времени нет. Есть только происходящие процессы.
Мы говорим о наличии времени только тогда, когда происходят события. Нет событий – нет времени.
Столкнулись позитрон с электроном, превратившись в кванты электромагнитного излучения – это событие. Каркнула ворона – это событие. Умер человек – это событие. Поскольку в мире все время что-то происходит, мы и говорим о наличии времени.
Время, как и массу, как и расстояние, мы отсчитываем по калиброванным отрезкам. Мы договорились: вот такой вот отрезок пространства считать метром, вот такой вот кусок массы – килограммом, а вот такой отрезок времени – секундой. Эталоны метра и килограмма хранятся в парижской Палате мер и весов. Эталонный метр сделан из твердого и почти не подверженного температурным расширениям платино-иридиевого сплава. Эталон килограмма сделан из того же материала и представляет собой цилиндр высотой и диаметром в 39 мм.
А вот секунду в Палату мер и весов не положишь. Ее эталон овеществлен в особо точных атомных часах – чертовски сложном приборе, в котором используются неизменные природные процессы – электромагнитные колебания возбужденного атома цезия, например.
Эталонные метры имеют в сечении сложную форму. Это чтобы не гнулись!
Эталонный килограмм накрыт колпаками, чтобы уменьшить все воздействия, включая оседающую пыль.
Атомные часы
В быту для измерения времени нами используются приборы попроще – обычные механические или электронные часы, которые из-за их примитивности все время приходится подстраивать под сигналы точного времени. А некоторые электронные наручные часы уже умеют ловить сигналы точного времени, передающиеся по радио, и сами подстраиваются.
Мы смотрим на круговое движение стрелок и так определяем время. Раньше люди измеряли время по течению песка в песочных часах или воды в водяных, по движению тени в солнечных часах. В общем, всегда люди отмеряют время по какому-то равномерному движению.
Потому что времени, как отдельной субстанции нет, есть только движение материальных объектов в пространстве, которое мы и воспринимаем, как время.
– Но если времени нет, почему тогда у времени есть свойства? – спросит тот же умник в круглых очках. – Такое, например, свойство, как однонаправленность. В пространстве можно перемещаться во все стороны. А во времени – только в будущее.
Верное замечание. Но что мы понимаем под однонаправленностью времени? Что значит «нельзя переместиться в прошлое»?
А это значит, что нельзя стать моложе, например. Мы все своим чередом идем от детства через юность и молодость к зрелости и старости. И остановить этот процесс не можем. Если стакан разбился, мы не можем вернуться в прошлое и переставить его от края стола подальше. Если у нас кончились деньги или другие ресурсы, мы не можем вернуться в прошлое, когда они у нас еще были, и перепланировать траты.
? Почему в пространстве путешествовать можно, а во времени нельзя?Да потому и нельзя, что пространство есть, а времени нет – не в чем путешествовать! Мы видим, как перемещаются в пространстве предметы – вот и вся иллюзия времени. Хотите попасть в «прошлое», просто переместите все предметы, все поля, все частицы в мире в то положение, которое они в прошлом занимали, и задайте им те скорости, которые они имели тогда – вот и все. Можно это сделать?
Нельзя.
Потому что стакан уже разбился, а мы состарились – и не можем повернуть эти процессы вспять. Вот в этом и заключается весь фокус: не время необратимо! Необратимы некоторые физические процессы – вот в чем кажущийся феномен необратимости времени.
Мы не можем повернуть вспять некоторые формы движения материи.
Мы не может омолодиться. Мы не можем потраченную из батарейки карманного фонарика энергию вернуть обратно, потому что она уже превратилась в свет и тепло – и фотоны излучения безвозвратно рассеялись в пространстве. Как их теперь собрать по квантам во вселенной и засунуть обратно в батарейку? Да никак! Поэтому время, точнее, большинство процессов движения необратимы.
Причем с точки зрения физики они необратимы принципиально! И отсюда вытекает много следствий – например, невозможность создания вечного двигателя второго рода, то есть такого двигателя, который бы преобразовывал зряшное тепло в полезную работу.
Непонятно?
Что ж, придется поговорить про вечные двигатели. Это будет крайне занимательная и весьма поучительная беседа!Эта идея – сделать вечно крутящееся колесо – занимала человечество сотнями лет. Еще древние… нет, на сей раз не греки, а индусы мечтали построить такую штуку, чтобы она крутилась вечно и сама по себе. Однако самый пик изобретательства пришелся на европейское Средневековье и эпоху Возрождения. Тогда как раз вовсю строились мельницы, вот европейские механики и задумались: а нельзя ли такое приспособление соорудить, чтобы никакой внешний привод – ни от течения реки, ни от ветра – не был ему нужен. Ведь не везде есть ручьи и речки, не везде дуют постоянные ветра. Как хорошо было бы – построил, запустил один раз такое колесо, присоединил к нему мельничные жернова для помола муки, и оно само крутится. «Перпетуум мобиле» – вечное движение на латыни.