Физика на пальцах. Для детей и родителей, которые хотят объяснять детям - Никонов Александр Петрович 22 стр.


Неустойчивая система – это карандаш, стоящий на острие или шарик на пригорке. Зафиксировать эту систему практически не удастся, любое случайное дуновение, любое дрожание молекул эту системы валит – карандаш падает, шарик скатывается с пригорка вниз.

Равновесная система – это система, находящаяся в равновесии. Нет в ней никаких пиков, все усреднено и мертво. Шарик в ямке – система равновесная.

Устойчивая равновесная система.

Неравновесная система – та, что находится в неравновесии. В ней присутствует разница потенциалов, за счет чего система может двигаться. Шарик на пригорке – неравновесная система, которая стремится к равновесию. Это неустойчивая неравновесная система.

– А зачем тогда разделять системы на устойчивые и равновесные? – спросите вы. – Разве неустойчивость не всегда совпадает с неравновесием, а устойчивость с равновесием?

Не всегда.

Человек – устойчивая неравновесная система. Он очень сложно организован, степень его внутренней организации запредельна! Такая система немедленно должна начать обваливаться, как карандаш, стоящий на острие. Но она не обваливается, потому что сделана так, что каждую секунду активно борется за свое неравновесие, за свою выделенность из среды, тратя на это бездну энергии. Это характеристика всех живых систем – борьба за жизнь против энтропии.

Наконец, бывают еще неустойчивые равновесные системы. Пример? Представьте пригорок, а на нем шарик. И вот мы, чтобы шарик тут зафиксировать, делаем крохотную ямку на вершине пригорка. И аккуратно ставим туда шарик.

Стоит! Уравновесился, собака!

Но стоит только чуть-чуть колебнуть этот шарик, как он неудержимо скатывается с пригорка вниз. Равновесие?

Да, но очень неустойчивое. Потому что пассивное. За свою устойчивость шарик не борется. Он ведь неживой.

Жизнь – это устойчивое неравновесие. И очень большое неравновесие. Очень удаленное от энтропийности. Очень организованное.


Равновесие и устойчивость

? А что такое организация?

Хороший вопрос!..

Организация – великий противник энтропии. Разницу между организованной материей и хаотичной видно на рисунке ниже.

Более естественным, то есть статистически более вероятным состоянием материи является энтропийное. Не зря существует поговорка, отражающая этот фундаментальный физический принцип: «Ломать – не строить». Можно даже не ломать, а просто предоставить все времени, и оно в конце концов расправится со всем, что нам дорого и мило. Чтобы противостоять разрушающему влиянию энтропиии, нужно бороться.

Внимательно посмотрите на рисунки далее. Чем отличается состояние системы слева и справа, если материал, из которого система создана, одинаков? Количество чайников и игральных костей одинаково, их химические и физические свойства одинаковы. Но первый же взгляд на рисунок выявляет существенную разницу.


В чем разница систем, если количество и качество предметов в них одинаково?


Разница – в организации! Справа организация есть, а слева ее нет. Мы затратили труд и энергию на то, чтобы из естественного хаотичного состояния перевести систему в состояние порядка. Мы просто взяли и расставили предметы в нужном нам порядке, потратив на это силы и время. Можно сказать, что мы вложили в систему энергию.

Как правило, высокоорганизованные системы содержат больше энергии, чем низкоорганизованные. И организуя системы, мы (или эволюция) запасаем в них энергию.

Жизнь – это очень сложно организованная материя.

По сравнению с хаотическим расположением атомов и молекул частицы, выстроенные в сложную структуру живого существа, представляют собой вершину эволюционной организации!

Поэтому хищники кушают травоядных зверюшек. Они просто нагло пользуются чужой организацией! Если есть что-то уже организованное, то есть некий объем энергии, запасенный организацией, его можно сожрать и путем развала этой организации энергию высвободить и присвоить. Так рассуждал бы хищник, если бы знал физику.

Вот растет дерево. Постепенно, долго. Оно питается микроэлементами почвы через корни и солнечным светом через листья. Каждый зеленый лист – это радар для приема солнечного излучения. С помощью солнечной энергии дерево организуется, то есть строит себя из хаотической грязи почвы. Таким образом оно запасает энергию. А потом приходит мужик, рубит дерево на дрова и высвобождает эту накопленную энергию в виде тепла – путем разрушения древесины огнем в печке. И остается хаотический вещественный мусор в виде улетевших в трубу газов и золы, которая уже не горит.

Кстати, внутри человека происходит то же самое, что и в печке – окисление топлива (еды) кислородом. Человек вдыхает через специальное приспособление окислитель. И использует его для сжигания топлива. Только внутри нас горение происходит очень медленно.

И вот что я вам еще скажу! Человек питается вовсе не едой! Потому что любой организм выделяет ровно столько массы, сколько он закидывает себе в рот. Разумеется, это не касается детей и прочих растущих организмов, которые увеличиваются в размерах. А вот взрослый организм, который уже не растет и не хочет толстеть, выбрасывает вместе с выделениями (кал, моча, пот, сопли, водяной пар изо рта) ровно столько, сколько поглощает. Зачем же он тогда ест?

Да затем, что ему нужна энергия для жизни! А энергию он получает путем деструкции еды, то есть разрушения высокоорганизованных молекул и превращения их в низкоорганизованные.

Человек питается чистой организацией материи![3]

И вот теперь давайте зададимся хулиганским вопросом. Если бы существовал бог, мог бы он в нашем мире сделать идеальное существо, то есть такое, которое кушает и не какает?

Конечно, нет! Ведь ежесекундно борясь с энтропией и поддерживая свою выделенность из среды, свою организацию, мы разрушаем чужую организацию – организацию растений и животных, которых поедаем и сжигаем в своей утробе. А куда девать «золу»? Куда девать то, что осталось от высокоорганизованного вещества после его разрушения – обломки? Ведь нам не вещество нужно, а только его разрушение! Не накапливать же «мусор» в организме! Приходится выбрасывать. Таким образом, сходив в туалет, человек сбрасывает овеществленную энтропию.

И это касается не только человека и прочих живых существ, но и других сложных систем, например, цивилизации. Вопреки крикам защитников природы, человечество не может жить, не производя мусор и не загрязняя так или иначе окружающую среду… Поняли эту великую мысль? Теперь вам есть, что ответить маме, когда она станет ругать вас за бардак и мусор в вашей комнате.

– Невозможно жить и не мусорить! Овеществленная в мусоре энтропия – неизбежный спутник всех живых систем!

Услышав такое, мама пойдет, конечно, посоветоваться к папе, чтобы решить, не стоит ли вызвать ребенку врача, видимо, он переутомился. И, возможно, принесет с семейного совета следующую мудрую мысль:

– Сынок, сбрасывай свою энтропию в мусорное ведро, а в комнате немедленно наведи организованный порядок! Не позволяй наступать хаосу на цивилизацию!

Иначе останешься не только без мороженого, но и без новых игрушек.

Против столь убедительных научных аргументов спорить вам, конечно, будет трудно. Придется подчиниться грубой силе…

А мы в заключение этой главы и основного текста книги сделаем главный вывод: организация, то есть усложнение материи в одном месте, всегда оплачивается ее разрушением в другом месте. Невозможно созидать, не разрушая чего-либо. Поэтому мы всегда обречены что-то брать у природы и портить. И так ведет себя все живое. Поскольку такова физика нашего мира.

Ну, а чем оплачивается эволюция в целом на нашей планете? Ведь когда-то жизни на ней не было, а потом она возникла буквально из грязи и, постепенно-постепенно усложняясь, доросла до высшей ступени эволюции – человека. Разрушением чего оплачивается этот пир духа?

Разрушением Солнца.

Именно оно, сгорая и безвозвратно тратя свои запасы термоядерного топлива (попросту говоря водорода), обеспечивает усложнение материи на нашей планете.

Если вдруг у кого возник вопрос, а откуда взялось Солнце, рекомендую его припрятать до выхода следующей книжки – о звездах.

Приложение Элементы мирового конструктора

В этом приложении мы с вами познакомимся с некоторыми простейшими химическими веществами из таблицы дедушки Менделеева. Про водород, кислород и хлор вы уже прочли кое-что. А теперь познакомимся с теми элементами, которые наиболее важны для человека или просто интересны сами по себе.

Углерод – С (6 протонов, 6 нейтронов, 6 электронов)

Копоть, сажа, уголь – это и есть углерод практически в чистом виде. Черное пачкающее вещество. Правда, сегодня городскому жителю углерод чаще всего встречается в виде графита, то есть в виде грифеля в простом карандаше. Это тоже пачкающее, мягкое серо-черное вещество. Здесь его пачкающие свойства применяют с пользой – чтобы оставлять следы на бумаге.

Копоть, сажа, уголь – это и есть углерод практически в чистом виде. Черное пачкающее вещество. Правда, сегодня городскому жителю углерод чаще всего встречается в виде графита, то есть в виде грифеля в простом карандаше. Это тоже пачкающее, мягкое серо-черное вещество. Здесь его пачкающие свойства применяют с пользой – чтобы оставлять следы на бумаге.

Однако есть и другие формы существования углерода – совершенно не черные, не пачкающие и не мягкие, а совсем даже напротив – прозрачные и очень твердые. Такая форма существования углерода называется алмазом. Если грифель растирается в пыль руками, то алмаз – самое твердое вещество на Земле. И кто скажет, что он пачкается? Он прекрасен! Это вам любая женщина подтвердит.

Но каков фокус! С одной стороны – нечто черное, непрозрачное, проводящее электрический ток и очень мягкое. С другой – бесцветный, прозрачный, невероятно твердый изолятор (материал, не проводящий ток). И это все – одно и то же вещество!

Почему?

Фазовый переход, друзья мои! При определенных (очень высоких) температурах и давлениях графит превращается в алмаз. Химически он остается все тем же веществом, но его физические свойства, как видите, меняются кардинально. А все из-за того, что перестраивается кристаллическая решетка.


Так упакованы атомы в графите


А так они располагаются в алмазе


Однако при прямо противоположных физических свойствах своих химических «привычек» алмаз не лишился. Он точно так же может прореагировать с кислородом (О) и полностью окислиться, то есть сгореть без остатка, целиком превратившись в углекислый газ (СО2).

Углерод – один из важнейших для жизни элементов. Собственно, жизнь из него и «сделана». Этот элемент обладает чудесным свойством выстраивать сам с собой, а также с другими элементами длинные молекулы, именуемые полимерами. Из таких длинных атомных цепочек и строится вся органика, то есть, грубо говоря, «живое вещество».

Азот (N), стоящий в таблице Менделеева правее углерода, – это газ. И соседний кислород (O) тоже газ. И фтор (F) – газ. А вот более легкий, чем эти трое, углерод – почему-то представляет собой твердое вещество. Почему? Потому что он, в отличие от кислорода, азота и фтора, не образует легких молекул из двух атомов, типа О2, N2 и F2. Сила связи между атомами кислорода в одной молекуле кислорода О2 велика, а между разными молекулами кислорода слаба – вот они и разлетаются в разные стороны. Зато в алмазе, например, все атомы углерода связаны друг с другом одинаково крепко – в один сплошной полимер. Можно сказать, что кристалл алмаза – это одна сверхгигантская молекула. И конечно, такая сверхтяжелая «молекула» газом быть никак не может.

Тот раздел химии, который изучает углеродные полимеры, называется органической химией. Углеродные цепочки – тот «скелет», на котором строятся молекулы жизни.

Круговорот углерода в природе прост – животные дышат кислородом, а выдыхают углекислый газ (СО2), связывая таким образом углерод. Растения же, напротив, дышат углекислым газом, выдыхая в атмосферу кислород, а высвобожденный углерод пускают на строительство своего «тела» – ствола, листьев, корней. Потом растения поедаются животными, и углерод, как главный строительный материал всего живого, поступает в их тела.

В человеке массой 70 кг содержится 15 кг углерода. Больше, чем углерода, в организме человека только кислорода – почти 45 кг. А водорода – 6 кг. При этом атомов водорода в штуках почти в два раза больше, чем атомов кислорода, просто водород очень легкий. Водород и кислород присутствуют в нашем организме в основном в виде воды, из который человек состоит на 70 %. Человек, по сути, это водный пузырь, армированный костями. Точнее, миллиарды микроскопических водяных пузыриков, именуемых клетками. Все жизненные реакции внутри нас идут в водном растворе.

Фтор – F (9 p+, 10 n, 9 e-)

Это, пожалуй, самый агрессивный элемент из существующих, стремящийся прореагировать со всем, что попадается ему «под руку». Фтор находится в правом верхнем углу таблицы Менделеева, что уже говорит о многом. Это практически полюс системы элементов, самая ее крайность.

Мы привыкли тушить огонь водой, потому что вода негорюча. Но в атмосфере фтора горит даже вода, высвобождая кислород и образуя фторид водорода (HF). Если этот фторид растворить в воде, то получится плавиковая кислота – самая агрессивная кислота из известных нам. Обычную кислоту (серную, соляную и пр.) можно хранить в стеклянных сосудах. А плавиковая разъедает даже стекло, поэтому ее хранят в специальных фторопластовых емкостях.

Если в атмосферу фтора бросить кремний или уголь, то их даже поджигать будет не надо – сами воспламенятся, настолько хочется фтору с чем-нибудь пореагировать! Не зря его так назвали: «фтор», что в переводе с греческого означает «разрушающий». Опасная штука! В атмосфере фтора горят и кирпич, и асбест, и многие металлы.

Однако в малых дозах фтор может быть и полезен. В микроскопических количествах мы получаем фтор с водой, и он, встраиваясь в наш организм, попадает в зубную ткань и позволяет зубам бороться с бактериями, вызывающими кариес, то есть гниение зубов. Но стоит только содержанию фтора в воде превысить допустимые нормы, как зубы и весь организм начинают активно разрушаться. В организме человека содержится примерно 3 мг фтора.

И еще – именно фтор, наряду с тяжелой водой, помог сделать атомную бомбу. Для бомбы необходим уран-235, который надо было отделить от урана-238. Химически их не разделишь, это одно и то же вещество. Как же выделить из урана атомы, в ядрах которых 235 нуклонов, отделив их от атомов, где 238 нуклонов?

Можно попробовать использовать центрифуги – раскручивать жидкость, и тогда чуть более легкие фракции (атомы) станут отбрасываться центробежной силой чуть дальше. Затем это более легкое отбирать, снова запускать на центрифугу и таким образом раз за разом обогащать нужными нам фракциями. Именно так отделяют тяжелую воду от обычной, легкой.

Но беда в том, что уран – не жидкость, а металл. Что же делать? Выход нашелся. Фторид урана, то есть соединение урана с фтором – легкоплавкое вещество, которое можно при невысоких температурах сделать жидкостью и подвергнуть сепарации. А уж затем, после сепарации, снова выделить из фторида чистый уран, уже разделенный.

Азот – N (7p+, 7n, 7e-)

Воздух по большей части состоит из него, родимого. Напомню: азота в атмосфере около 80 %, а кислорода – 20 %. Так что дышим мы в основном им. В организме для реакций используется только вдыхаемый кислород, азот же играет роль балласта – как вдыхается, так в неизменном виде и выдыхается. Но балласт этот не бесполезен! Дышать одним только чистым кислородом смертельно опасно.

Азот, наряду с углеродом и другими элементами, входит в ряд необходимых строительных материалов для нашего тела, только получаем мы его не из воздуха, а с едой – в составе азотистых соединений.

Азот также входит в состав удобрений, которые вносят в почву для повышения урожайности, потому что азотными удобрениями питаются растения, строя из азотистых веществ плоды и стебли. А уж эти плоды и стебли поедаем потом мы с вами. Так азот попадает в наш организм. В организме среднего человека содержится примерно 2 кг азота.

Любопытно тут вот что. Пользу азотистых соединений для урожая люди заметили несколько столетий назад. Потом в Южной Америке открыли залежи селитры – азотистого минерала, который стали использовать в качестве удобрения. Это повысило урожайность и крепко подсадило сельское хозяйство на ископаемую селитру. Настолько крепко, что мыслители позапрошлого века вскоре начали хвататься за голову: «А что мы будем делать, когда исчерпается южноамериканское месторождение, которое питает сельское хозяйство всего мира? Не грядет ли вслед за этим всемирный голод?» Видные ученые всерьез предрекали крах цивилизации из-за дефицита селитры!

Людям всегда свойственно тревожиться за свое будущее, и они постоянно задаются такого рода опасливыми вопросами по поводу разных ископаемых и прочих запасов. А что будет, когда закончится нефть? А что будет, когда закончится газ? Металлические руды? Не помрем ли мы?.. Но никогда до полного исчерпания и помирания дело не доходит, потому что с помощью ума и природной сообразительности человечество каждый раз находит замену тающему на глазах ресурсу. Сначала люди делали орудия труда и охоты из камня под названием кремень. Но не успели его запасы исчерпаться, как человечество изобрело плавку металла… Сначала жгли в печах дерево, а когда Европа «облысела» почти до конца, нашли новое топливо – уголь. Не успел кончиться уголь, стали использовать нефть в качестве топлива…

Так было и с селитрой. Человечество решительно не погибло, а просто стало производить азотные удобрения из воздуха, где этого азота полным-полно.

Назад Дальше