Теперь сообщу вам еще одну тонкость, без которой наше погружение в микромир будет неполным. Эта тонкость столь тонка, что доставила в свое время ученым немало головной боли. Они давно обнаружили, что при распаде нейтрона образуются протон и электрон, но у них не сходился энергетический баланс. Ну, то есть до реакции распада в системе (у нейтрона) была одна энергия, а после распада – чуть меньшая: в сумме протон и электрон не давали той энергии, которую имел нейтрон. Куда-то исчезал кусочек. Таких вещей физики не любят!
У физиков самые суровые законы – это законы сохранения массы, энергии, заряда…Сколько было чего-то до эксперимента, столько и должно остаться после опыта. Это понятно: если вы взяли вазу и ударили ее молотком, разбив на куски, то все осколки вместе будут весить столько же, сколько целая ваза. Потому что масса не может исчезнуть или взяться из ниоткуда!
То же самое с энергией – если до реакции было столько-то энергии, значит после реакции ее должно столько же и остаться. Она ведь никуда не исчезает и не берется из ниоткуда, она просто переходит в другие формы.
То же самое с зарядом. Общий заряд до эксперимента должен быть равен общему заряду после эксперимента.
С зарядом все обстояло прекрасно. Нейтрон заряда не имеет, то есть заряд у него нулевой. А после распада нейтрона получается протон с зарядом +1 и электрон с зарядом -1. Плюс один и минус один дают в сумме ноль. То есть и после реакции распада общий заряд системы остался нулевым. А вот небольшая доля энергии куда постоянно исчезала.
– Может быть, при этой реакции образуется еще одна какая-то частичка – без заряда и крайне маленькая, которую мы не умеем пока задержать? Она-то и уносит недостающую энергию, – задались вопросом ученые люди, наморщив лбы.
Так оно и оказалось. Частичку эту назвали нейтри́но. У нее нулевой электрической заряд (как у нейтрона), огромная скорость и еще одно свойство, из-за которого ее так долго не могли поймать – она почти не реагирует с веществом. Нейтрино может прошить свинцовую плиту толщиной от Земли до Солнца. Солнце излучает триллионы триллионов этих нейтрино, и кажду секунду они прошивают нас и всю Землю насквозь, а нам наплевать. Нет взаимодействия!
Зачем я вам рассказал про нейтрино? Зачем вам обращать свое драгоценное внимание на эту ничтожную частичку, если она нас совершенно не замечает, прошивая насквозь, никак не реагируя?
Я преследовал две причины. Во-первых, чтобы вы понимали – хотя учеными открыто уже довольно много всякой ерунды в микромире, типа нейтрино, но главными для нас все равно являются вот эти три частицы – электрон, протон, нейтрон. Из них сделано все вокруг нас.
А во-вторых, мы с вами уже имеем представление о двух главных силах в природе или, иначе говоря, двух основных взаимодействиях, а сейчас узнаем третье – вот как раз с помощью нейтрино.
Напомню, потому что повторенье – мать ученья, а мать надо любить:
1) есть ядерные силы, которые сцепляют протоны и нейтроны внутри ядра, сопротивляясь силам электрического отталкивания положительно заряженных протонов.
2) и есть эти самые силы электрического отталкивания и притяжения между частицами.
Вот две силы природы, которые мы уже знаем… Только я хочу вас попросить об одном одолжении. Уж уважьте старика! Давайте вместо «сила» будем говорить «взаимодействие». Я понимаю, что слово «сила» вам нравится больше, потому что оно привычнее. Но мы с вами теперь ученые люди, и нам пристали более точные слова и выражения. А мне представляется, что слово «взаимодействие» точнее и умнее. Так что вместо «ядерные силы» и «электромагнитные силы» скажем «сильное взаимодействие» и «электромагнитное взаимодействие».
Вообще все, что происходит в этом мире, все-все-все движения и явления…ну вот буквально все без исключения объясняется всего четырьмя взаимодействиями. Половину мы уже знаем.
Сильное взаимодействие сцепляет нуклоны в ядре, позволяя ядрам существовать. Без него ядер атомов просто не могло бы быть.
Второе взаимодействие – электромагнитное. Оно отвечает за притяжение разноименных зарядов и отталкивание одноименных. Плюсик отталкивается от плюсика, минус от минуса; а вот плюсик с минусиком притягиваются, словно магнитики. Поэтому минусовые электрончики охотно подлетают к положительно заряженным ядрам атомов и начинают вокруг них свое счастливое самозабвенное кружение.
Таким образом, электромагнитное взаимодействие обеспечивает нам существование уже не ядер атомов, а самих атомов в сборе. А поскольку все вокруг нас состоит из атомов, электромагнитное взаимодействие для нас является главным. Оно отвечает за все, что происходит в макромире вокруг нас. За всю химию, например, то есть за все химические реакции. Вся наука химия – это сплошное электрическое взаимодействие зарядов. Сила трения – тоже проявление электромагнитного взаимодействия. И фазовые переходы – таяние льда, испарение воды. Горение дров в печке. Работа нашего организма. Любовь к маме. Свет в окошке… Все это – проявление электромагнетизма.
Но если все вокруг нас – проявление всего двух сил, точнее, взаимодействий, то зачем нужны еще два взаимодействия? Зачем их четыре, если можно обойтись двумя?
Зададимся вопросом: а вот распад нейтрона – это какое взаимодействие? Нейтрон один-одинешенек, значит, никакие ядерные силы со стороны других нуклонов на него не действуют. И он электронейтрален – никакие электромагнитные силы на него тоже не действуют. Но он вдруг раз – и распадается. Под воздействием каких-то внутренних сил. Каких? Эти силы называют слабыми – в противовес сильным ядерным.
Слабое взаимодействие! Третье по счету. Именно оно отвечает за распад частиц. Казалось бы, пустяк. Но если бы не слабое взаимодействие, никакой жизни на нашей планете не было бы. Потому как слабое взаимодействие отвечает за те ядерные реакции, которые идут в Солнце и обеспечивают его свечение. Солнце – источник жизни на Земле. Основной поставщик энергии. Без слабого взаимодействия это было бы невозможно. Именно оно ответственно за те реакции, которые дарят нам тепло и свет.
Ну, а четвертая сила природы, четвертое и последнее взаимодействие – гравитационное. То, что мы ходим по поверхности планеты, а не улетаем в мировое пространство; то, что яблоки и прочие предметы падают на пол, а Земля крутится вокруг Солнца, подставляя ему то один, то другой бочок для обогрева и освещения, – это следствие гравитации, то есть всемирного тяготения. Без него нас бы тоже не было.
Все тела, имеющие массу, притягиваются друг к другу. Сила этого притяжения невелика, поэтому между не очень тяжелыми предметами совершенно незаметна. Вы, например, притягиваетесь к маме, но не падаете на нее, как камень на землю, потому что силы этого притяжения слишком малы. И только там, где в ход идут гигантские массы, типа массы нашей планеты, сила всемирного тяготения становится заметной и набивает шишки при падении. Земля притягивает, и это прекрасно.
Вот все четыре взаимодействия, которые существуют в природе. Больше никаких нет. И они за все происходящее в мире отвечают. Посмотрите на рисунок, там все прекрасно показано.
Теперь, узнав про это, вы стали необыкновенно умными. То ли еще будет!
Все происходящее в мире определяется четырьмя видами взаимодействий.
Глава 5 Колдуны и ученые
Человечество существует десятки тысяч лет. А наука в современном понимании этого слова существует лет двести. Ну, пусть триста. А до этого человечество слепо тыкалось в природу, норовя путем проб и ошибок чего-то достичь в практическом смысле. И вот, поднакопив знаний, человечество стало их систематизировать, анализировать и заложило основу науки. После чего прогресс и развитие цивилизации ускорились. Развитие человечества пошло невероятно быстро.
Даже вы, мой юный или не очень читатель, знаете об устройстве мира больше, чем знало все человечество пятьсот лет назад. Вы знаете, как устроено вещество. А раньше человечество об этом даже представления не имело. И потому в Средние века, то есть лет пятьсот – шестьсот назад была весьма популярной идея сделать золото из какой-нибудь дряни.
Люди, которые этим занимались, назывались алхимиками. Алхимия – предтеча химии, то есть невзрачное сухое зернышко, из которого потом выросло прекрасное растение науки по имени химия.
Алхимиков очень любили средневековые правители. Они выделяли им пару комнат в своих замках, и алхимики проводили там свои опыты – нагревали в банках и ретортах разные вещества, смешивали их в случайном порядке, пытаясь достичь результата. В основном их работа была направлена на поиск трех вещей:
– панацеи (лекарство от всех болезней),
– эликсира бессмертия (средство для вечной жизни)
Алхимиков очень любили средневековые правители. Они выделяли им пару комнат в своих замках, и алхимики проводили там свои опыты – нагревали в банках и ретортах разные вещества, смешивали их в случайном порядке, пытаясь достичь результата. В основном их работа была направлена на поиск трех вещей:
– панацеи (лекарство от всех болезней),
– эликсира бессмертия (средство для вечной жизни)
– и философского камня, который бы превращал разные вещества в золото.
В надежде на эти прелести средневековые владельцы замков и оплачивали безумные опыты алхимиков, которых в народе считали колдунами.
Чаще всего алхимики пытались с помощью разных ухищрений превратить в золото ртуть и свинец. Почему?
А посмотрите в таблицу Менделеева! Где расположены ртуть и свинец? Рядом с золотом! То есть по тяжести они почти одинаковы. Точнее говоря, почти одинаковы по плотности. Интуиция подсказывала алхимикам, что раз у этих металлов похожи некоторые свойства (плотность), значит, копать надо в этом направлении, сделать еще какой- то шажок, чего-нибудь добавить, и серый невзрачный легкоплавкий мягкий тяжелый свинец превратится в желтое сверкающее мягкое тугоплавкое тяжелое золото.
Увы! Не получилось.
И мы теперь знаем, почему.
Потому что золото – химический элемент, то есть простейшее вещество. Сложное вещество можно собрать из простых. Сложное вещество можно разложить на простые. И если бы золото было веществом сложным, его можно было бы сконструировать из химических элементов, как поваренную соль можно сделать химическими методами из натрия и хлора, а воду – из водорода и кислорода.
Но золото вещество простое, это элементарная деталька химического конструктора природы. Из деталек можно собирать что-то более сложное химическими методами. А вот золото собирать не из чего: оно само уже сделано из элементарных частиц.
? Почему нельзя превратить свинец в золото?Свинец имеет номер 82 и атомный вес 207 единиц. То есть в его атомном ядре 82 протона и (207 – 82) = 125 нейтронов.
А у золота номер 79 и вес – 196. То есть в его ядре 79 протонов и 117 протонов.
Чтобы превратить атом свинца в атом золота, нужно как-то вынуть из его ядра три протона и догрузить восемью нейтронами. Потом надо смахнуть с орбиты лишние электроны. И это нужно сделать с каждым атомом свинцового слитка, а этих атомов в 1 грамме свинца больше, чем звезд на небе.
Вы не знаете ближайший магазин, где продаются вразвес нейтроны? А где можно достать такой пинцет и такой микроскоп, чтобы увидеть атом и с ним поработать? Нет такого пинцета! Потому что пинцет сам состоит из атомов.
Невозможно.
Именно это слово возникло в голове у химиков, когда наука узнала, как устроено вещество. Им оставалось только улыбаться, вспоминая наивные попытки средневековых алхимиков.
Ну, невозможно превратить один химический элемент в другой! Никак нельзя.И всем это стало понятно.
Каково же было удивление ученых, когда они узнали, что иногда одни химические элементы все-таки превращаются в другие! Сами по себе. Правда, в количестве одного атома, а не всего слитка целиком.
Почему так бывает?
А помните мы говорили про изотопы? Это такие атомы-уродцы, у которых на один-два лишних нейтрона больше, чем у собратьев. Так вот, эти лишние нейтроны, чувствуя свою ненужность плотной семье атомного ядра, впадают в меланхолию и кончают жизнь самоубийством.
Распадаются.
Так бывает не всегда. Есть стабильные изотопы, в которых нейтронам живется хорошо, они водят хороводы и всячески прославляют жизнь внутри атомного ядра, даже не думая распадаться. Но не все изотопы столь благостны.
Газ неон, например, которым заполняют неоновые лампочки, имеет стабильные изотопы. В норме у «здорового» атома неона 10 нейтронов на 10 протонов. Но среди нормальных атомов встречаются и изотопные, у которых 12 нейтронов. Ничего, прекрасно себя такой неон чувствует. Неон-22 столь же устойчив, что и неон-20. Цифра здесь – это атомный вес, как вы поняли.
Есть стабильные изотопы и у кислорода. Например, кислород-17 и кислород-18. В норме атомный вес кислорода – 16 единиц (если не верите, гляньте в табличку дедушки Менделеева), но если присутствует лишний нейтрончик, то вес вырастает на единичку, и получается О17. А если два лишних нейтрона – О18.
Науке на сегодняшний день известно несколько сотен стабильных изотопов у разных элементов и несколько тысяч нестабильных.
Нестабильные – самые интересные! Возьмем, например, нестабильный изотоп углерода. Он называется углерод-14 или кратко – С14.
Углерод имеет номер 6 (проверьте, не соврал ли дядя-писатель) и атомный вес 12. То есть у нормального, прилично себя ведущего углерода 12 нуклонов в атомном ядре – 6 протонов и 6 нейтронов.
А вот у «больного» углерода на два нейтрона больше, соответственно атомный вес, измеряемый в гирьках нуклонов, у него составляет 14 единиц. Потому и зовут его углерод-14.
Такой больной атом с раздутым нейтронным флюсом долго не живет. Впрочем, смотря что называть словом «долго». Срок его существования измеряется тысячелетиями. По сравнению с человеческой жизнью это много, конечно. Но если сравнивать с нормальными ядрами, которые «живут» вечно, то это просто миг.
Что же происходит с С14 после «смерти»? Как он заканчивает свой жизненный путь?
Один из лишних нейтронов распадается. Мы уже знаем, что при этом получается – протон, электрон и нейтрино. Легкий электрон и совсем невесомое нейтрино выстреливаются из ядра с огромными скоростями и уносятся, как пули, прочь, а тяжелый протон остается в ядре. А что это значит?
Это значит, что в ядре стало на один протон больше, то есть углерод превратился в азот! Именно у азота в ядре 13 протонов. Можете посмотреть в таблице Менделеева.
Вообще, это удивительно! Свойства химического элемента, как мы знаем, определяются количеством протонов в ядре его атома. И вот к каким переменам приводит добавление всего одного лишнего протона… Углерод (6 протонов) – черный, твердый, пачкающий материал. Посмотрите на грифель простого карандаша – это чистый углерод. А азот (7 протонов) – прозрачный газ без запаха. Тем не менее, углерод превратился в азот, стоило появиться там лишнему плюсовому заряду. Понятно, что превратился в азот всего один-единственный изотопный атом из миллионов окружающих его нормальных углеродных, но все равно интересно.
Срок жизни атома-уродца по имени Углерод-14 составляет… А сколько же он составляет? Выше я написал, что несколько тысяч лет. Почему так неточно? Что дяде-писателю помешало написать точный или хотя бы приблизительный срок жизни С14?
А то помешало, что у атома изотопа углерода нет определенного срока жизни. Он может прожить минуту, а может сто тысяч лет. Предсказать это никоим образом невозможно – таковы законы микромира. Но зато мы может предсказать другое!
Мы совершенно точно можем указать период полураспада, то есть тот срок, за который распадется половина атомов-мутантов. Для углерода-14 он составляет 5700 лет. То есть из миллиона атомов-мутантов через 5700 лет распадется 500 тысяч. Через следующие 5700 лет распадется еще половина – 250 тысяч. Еще через один период полураспада снова распадется половина – 125 тысяч. И так далее.
То есть в микромире мы можем предсказывать поведение только больших ансамблей микрочастиц. А поведение одной частицы предсказать не можем. В этом элементарные частицы схожи с людьми, между прочим! Мы не можем предсказать, пойдет ли конкретный Вася Пупкин сегодня в магазин или накатит рюмку и проспит весь день дома, а в магазин отправится завтра. Но мы, изучив статистику, можем точно сказать: ежедневно этот магазин посещают около четырех тысяч человек. А каковы их фамилии, неважно.
Таким образом элементарные частицы обладают своим собственным непредсказуемым поведением.Мы не в состоянии предсказать поведение частицы не потому, что чего-то еще не знаем про ее свойства или устройство, а потому, что такова природа вещей – в наш мир на уровне элементарных частиц вшита принципиальная непредсказуемость. Именно поэтому мир не фатален, то есть непредсказуем, ведь он состоит из непредсказуемых частиц! Мы может делать краткосрочные прогнозы с той или иной степенью точности и уверенности, но все до конца предсказать невозможно. Даже указанная выше статистика имеет погрешности – я имею в виду пример с магазином. Да, мы знаем, что его ежедневно посещает около четырех тысяч человек плюс-минус сто. Откуда мы это знаем? Из опыта! Таковы данные наблюдений со времени открытия этого магазина. Никогда там не было за день менее 3900 человек и более 4100. А в среднем – 4 тысячи.
Значит, можно сделать предсказание: и завтра тоже придут четыре тысячи плюс-минус сотня. Эта неточность в предсказании – следствие общемировой непредсказуемости.
Вот, казалось бы, математически точная наука баллистика – она рассчитывает, куда упадет снаряд из пушки при определенном угле возвышения ствола и скорости вылета. Строгие формулы всегда дают однозначный вариант: снаряд упадет в такую-то точку. Однако на практике снаряд может упасть чуть правее или чуть левее, чуть дальше или чуть ближе расчетной точки. Предсказать, куда шваркнется данный конкретный снаряд, невозможно. Но известно, что снаряды всегда падают в некую область, которая называется эллипсом рассеивания. И потому совершенно точно мы можем лишь сказать: с вероятностью в 100 процентов снаряд попадет в эллипс рассеивания. Это – свидетельство несовершенства мира, его непредсказуемости, вшитой в саму основу бытия – в законы существования элементарных частиц.