Металлы, которые всегда с тобой - Терлецкий Ефим Давидович 3 стр.


Берне был явно огорчён той невероятной сложностью, с которой давался каждый шаг познания тайн живой азотфиксации.

Мысль о том, что фиксация азота происходит благодаря ферментам, была впервые высказана замечательным советским биохимиком Алексеем Николаевичем Бахом. Но здесь не обошлось без курьёзов. Ещё в 1934 году Бах вместе со своими сотрудниками опубликовал небольшую статью об успешном получении бактериальных экстрактов, способных фиксировать азот. Однако другим учёным не удалось воспроизвести предложенную методику экспериментов. В то время ещё не были известны все те жесточайшие требования к чистоте этих опытов, благодаря которым только и был достижим успех. Это обстоятельство надолго отбило охоту исследовать столь коварный процесс. Главным, пожалуй, было то, что ещё не наступила эра эффективных аналитических методов исследования с использованием ядерного магнитного резонанса (ЯМР), ядерного квадрупольного резонанса (ЯКР), электронного парамагнитного резонанса (ЭПР), эффекта Мессбауэра, хроматографии...

Чрезвычайно сложные исследования, все же продолжавшиеся в течение последующих лет усилиями отважных одиночек, завершились успехом лишь в 1960 году. Именно тогда группа американских учёных во главе с Дж. Карнаханом представила бесспорные доказательства получения активных экстрактов из культур бактерий-азотфиксаторов. По их методу уже можно было воспроизводить препараты, фиксирующие молекулу азота. Это была нитрогеназа. Как удалось установить, нитрогеназа — сложный фермент, состоящий из двух белковых комплексов. Первый из них с молекулярной массой 200 тыс. содержит в качестве активаторов молибден, железо и серу. Второй, молекулярная масса которого гораздо меньше и составляет 50 тыс., имеет в своём составе только железо и серу. Можно считать, что в целом молекула нитрогеназы содержит 32 атома железа и 2 атома молибдена.

Как всякие белки, ферменты состоят из очень больших молекул, которые ещё называют макромолекулами. Одной из главных характеристик таких огромных молекул служит масса. Если судить по этому показателю, то нитрогеназа явно чемпион в тяжёлом весе среди ферментов.

Итак, когда про нитрогеназу сегодня многое стало известно, можно ли утверждать, что кончился этот «кошмар для кинетики»? Вряд ли. По-прежнему непросто экспериментировать с капризным ферментом. Прежде всего, исключительно трудно определить соответствие нитроnii.iae препаратов, с которыми работают разные исследо-n;iте-ли. Даже незначительные потери при очистке каждого in се белков могут привести к необратимым изменениям свойств всей системы. Трудность хранения белков усугубляется ещё и тем, что они чрезвычайно быстро окисляются па воздухе.

А если её смоделировать

Целые научные институты, различные лаборатории и исследовательские коллективы были поглощены изучением нитрогеназы, неизбежно распыляясь при этом и где-то повторяя друг друга. Естественно, это не шло на пользу делу. Для того чтобы объединить усилия биохимиков, химиков и физиков, а также для координации их работы в нашей стране в 1976 году Межведомственный совет по молекулярной биологии и молекулярной генетике Академии наук СССР утвердил проект под названием «Нитрогеназа и её модели». В его осуществлении участвуют Институт химической физики, Институт элементоорганических соединений им. А. Н. Несмеянова, Институт биохимии им. А. Н. Баха и некоторые другие учреждения Академии наук СССР. Руководителем проекта был назначен доктор химических наук, профессор А. Е. Шилов.

Цель проекта не ограничивается созданием катализаторов для фиксации азота в мягких условиях. Она включает разработку эффективных синтезов других вещёств, например гидразина. Это соединение из двух атомов азота и четырёх атомов водорода представляет собой высококалорийное топливо, при сгорании которого получаются только азот и вода. Таким образом, загрязнения окружающей среды не происходит. Конечно, было бы весьма заманчиво использовать в автомобиле вместо бензина гидразин, но он пока ещё очень дорог.

Несколько лет назад А. Е. Шилов и Г. И. Лихтенштейн предложили сравнительно простую схему действия нитрогеназы. Молекула азота проникает внутрь фермента через щель, соответствующую её размерам, и там активируется электронами восстановителя, которые, словно эстафеты, передаются по цепям молибдено- и железосодержащих центров. Активацию усиливают также и группировки серы. В качестве восстановителя выступает водород, который, в свою очередь, активируется другими ферментами.

Дальнейшие исследования экстракций из различных бактерий привели к открытиям и других железосодержащих ферментов. В начале 60-х годов был выделен фер-редоксин с молекулярной массой 6 тыс. В нем помимо железа роль активных центров играет и сера. Как видим, во всех катализаторах сохраняется принцип множественности компонентов. Интереснейшим свойством ферре-доксина оказалось то, что он имеет наиболее отрицательный потенциал среди природных переносчиков электронов. В 1965 году были открыты ещё два белка, содержащих железо и выполняющих функции переносчиков электронов. Это так называемый парамагнитный белок с молекулярной массой 24 тыс. и рубредоксин, масса которого составляет 6 тыс. В последнее время стали известны и другие железо содержащие белки, функции которых ещё до конца не выяснены.

Вот какая «железная рать» ополчилась против инертной молекулы азота.

Пока только в пробирке

Биологическая фиксация азота вызывала у специалистов не только восхищение, но и немалую досаду от того, что им не удавалось с такой лёгкостью, с какой этот процесс происходит у микроорганизмов, воспроизводить его хотя бы в лаборатории. Ясно было одно: нужно следовать по пути природы. Первым, кто это понял, был, пожалуй, академик А. Н. Бах. Ещё в 1934 году он писал: «...мы надеемся путём теоретического изучения сопряжённого действия биологических окислительно-восстановительных катализаторов, обусловливающего связывание атмосферного азота бактериями, выявить наиболее благоприятные условия для технического синтеза аммиака». Ну чем не химическая бионика? Таким и только таким образом можно было как-то приблизиться к решению одной из насущных проблем человечества — эффективного производства связанного азота. В лаборатории это удалось осуществить ровно через 30 лет.

В 1964 году в Институте элементоорганических соединений АН СССР под руководством доктора химических наук М. Е. Вольпина было сделано сенсационное открытие. В присутствии соединений переходных металлов: титана, ванадия, хрома, молибдена или железа азот активируется и при обычных условиях образует комплексные соединении, |>лслагаемые водой с выделением аммиака. И самым удивительным была не столько сама фиксация неподатли-iMiii лил ной молекулы, сколько то, что многие активные комплексы такого рода были давно', известны химикам. Но существовал некий психологический барьер, преодолён, который часто бывает труднее, чем совершить открытие: Просто никто до этого не ожидал, что молекулы ;i:ioi;i могут прочно «прилипать» к ионам металлов

В дальнейшем советские исследователи показали, что процесс фиксации можно значительно ускорить в присутствии катализаторов. Более того, с помощью все тех же переходных металлов удалось в обычных условиях заставить свободный азот соединяться с органическими вещёствами. Так были получены долгожданные и обнадёживающие результаты.

Дальше — больше. В 1969 году другая группа советских исследователей — на сей раз из Института химической физики поставила совсем уж невероятный эксперимент. Под руководством А. Е. Шилова удалось активировать азот металлокомплексами при температуре... минус 100 °С. Через год группе удалось, наконец, вплотную приблизиться к природной фиксации азота: были открыты системы активации на основе молибдена, и процесс шёл в обычных условиях. Таким образом, как бы. моделировалась работа нитрогеназы.

Возможно, ещё несколько рано торжествовать победу, ибо путь от пробирки до промышленной фиксации азота в мягких условиях не лёгок. Но все-таки будем считать, что главное сделано. Недаром большая группа учёных, руководимых М. Е. Вольпиным и А. Е. Шиловым, в 1982 году была удостоена Государственной премии СССР за цикл работ: «Химическая фиксация молекулярного азота соединениями переходных металлов».

Предвидение Баха сбылось. И кто знает, может быть, уже недалеко время, когда мы станем свидетелями небывалого взлёта индустрии связанного азота, когда совершенно необычные химические заводы будут производить дешёвые минеральные удобрения и когда с улыбкой будут вспоминаться разговоры об азотном голоде на нашей планете.

Разноцветная кровь

Есть ещё один «железный» помощник нитрогеназы, присутствие которого в клубеньках бобовых (а они, как мы знаем, результат симбиоза с азотфиксаторами), на наш взгляд,— одно из удивительных и интереснейших проявлений жизни. Это — гемоглобин. Он придаёт клубенькам красноватую или розовую окраску. Гемоглобин в растении? Такое утверждение ещё не так давно могло вызвать недоумение. Однако в 1939 году японский исследователь X. Кубо обнаружил в клубеньках сои красный пигмент, оказавшийся действительно гемоглобином. В отличие от гемоглобина животного происхождения растительный пигмент назвали леггемоглобином, или легоглобином. Приставка «ле» означает, что он присутствует в бобовых (по-латыни «легуминоза»).

Предвидение Баха сбылось. И кто знает, может быть, уже недалеко время, когда мы станем свидетелями небывалого взлёта индустрии связанного азота, когда совершенно необычные химические заводы будут производить дешёвые минеральные удобрения и когда с улыбкой будут вспоминаться разговоры об азотном голоде на нашей планете.

Разноцветная кровь

Есть ещё один «железный» помощник нитрогеназы, присутствие которого в клубеньках бобовых (а они, как мы знаем, результат симбиоза с азотфиксаторами), на наш взгляд,— одно из удивительных и интереснейших проявлений жизни. Это — гемоглобин. Он придаёт клубенькам красноватую или розовую окраску. Гемоглобин в растении? Такое утверждение ещё не так давно могло вызвать недоумение. Однако в 1939 году японский исследователь X. Кубо обнаружил в клубеньках сои красный пигмент, оказавшийся действительно гемоглобином. В отличие от гемоглобина животного происхождения растительный пигмент назвали леггемоглобином, или легоглобином. Приставка «ле» означает, что он присутствует в бобовых (по-латыни «легуминоза»).

Впрочем, уж такой ли он растительный? Самое любопытное, что в леггемоглобине гем образуется в бактериальных клетках, а глобин — в растительных. Но для чего необходимо такое дитя симбиоза? Все для того же: для доставки кислорода к месту сражения нитрогеназы с инертной молекулой азота. На этом поле боя повышенные затраты энергии лучше всего возмещаются кислородом.

Советскими учёными из Института биоорганической химии им. М. М. Шемякина была расшифрована полная аминокислотная последовательность молекулы леггемоглобина люпина, а в институте кристаллографии им. А. В. Шубникова установили его пространственную конфигурацию.

Итак, круг замкнулся. Мы видим, что там, где требуется интенсивная доставка кислорода организму, природа обращается к железу. Впрочем, есть и исключения (а какое правило без исключений?). В крови кальмаров, улиток, ракообразных и пауков растворён дыхательный пигмент гемоцианин, содержащий вместо железа медь. При переносе кислорода кровь, а вернее — гемолимфа этих животных окрашивается в голубой цвет.

Отличие первого от второго состоит в незначительной частности строения гема. Хлорокруорин растворён в гемолимфе, его молекула имеет массу 2,8 млн.

Здесь возникает вполне резонный вопрос: почему наша кровь именно красная, а не голубая или зелёная? Может быть, правы фантасты, утверждающие, что где-то там, в неведомых просторах Вселенной обитают голубые, зелёные или даже вообще бесцветные человечки? Понятно, что эти вопросы пока остаются без ответа. Думается, что природная игра цветами вообще, а цветом крови в частности, не случайна. В её основе лежат опять же свойства атомов в соответствии с Великим Периодическим Законом, о которых мы уже говорили.

Так или иначе, но цвет нашей крови — красный. И то, что в ней содержится гемоглобин, а не, скажем, хлорокруорин — это не прихоть природы, не случайность, а вполне эволюционная закономерность. В самом деле, у гемеритрина способность к переносу кислорода в два раза ниже, а у гемоцианина даже в пять раз ниже, чем у гемоглобина. Представляется уместным вспомнить строки М. Алигер про голубую жилку:

Покуда кровь течёт свободно в ней,

не слишком торопливо, в меру пылко,

становится она лишь голубей.

Но если в хрупком голубом сосуде

ей станет тесно, крови,—

рвёт она ' его в клочки.

Тогда лишь видят люди:

Кровь тяжела, тревожна и красна.

Поэты обычно тонко чувствуют природу явлений.

Гемоглобин и Шерлок Холмс

Впервые гемоглобин был обнаружен в 1839 году немецким исследователем Р. Хюнефельдом в крови обыкновенного дождевого червя.

Спустя 12 лет другой немецкий ученый О. Функ предложил метод получения устойчивых кристаллов гемоглобина, или, как их тогда называли, кристаллов крови. Он исследовал кровь из селезенки лошади, собаки и разных рыб. Красное вещество крови привлекало к себе все больше и больше внимания. Множество самых различных животных подверглось тщательным анализам на предмет нахождения у них кристаллов крови. Как только их не называли: и красящее вещество, и гематит, и багрянец крови. Чтобы как-то упорядочить этот терминологический хаос, известный немецкий физиолог Ф. Хоппе-Зайлер предложил название гематоглобулин, или гемоглобин ().

Разумеется, что гемоглобин как красящее вещество не мог не привлечь к себе пристального внимания и криминалистов. Старинная русская поговорка «кровь пути кажет» обретала вполне определенный смысл в применении к этому пигменту. Не зря уже в 1887 году молодой и еще мало кому известный писатель Конан Дойл в своем первом рассказе о великом сыщике и большом знатоке химии и судебной медицины Шерлоке Холмсе так описывает встречу с ним доктора Уотсона. «Лаборатория пустовала, и лишь в дальнем углу, пригнувшись к столу, с чем-то сосредоточенно возился какой-то молодой человек. Услышав наши шаги, он оглянулся и вскочил с места. «Нашел! Нашел! — ликующе крикнул он, бросившись к нам с пробиркой в руках.— Я нашел наконец реактив, который осаждается только гемоглобином и ничем другим!.. Господи, да это же самое практически важное открытие для судебной медицины за десятки лет».

Действительно, один из способов определения крови основан на действии реактива, который выявляет кристаллы гемоглобина характерной формы. Сегодня этот метод вытеснен спектральным анализом. В любой энциклопедии можно увидеть красивые спектры гемоглобина...

К этому времени было известно, что красный кровяной пигмент содержит белок и железо. Однако до расшифровки структурной формулы этого вещества было еще далеко. Это сделал замечательный польский биохимик Марцелий Вилыельмович Ненцкий, который с 1891 года жил и работал в Петербурге, где тесно сотрудничал с выдающимся нашим физиологом Иваном Петровичем Павловым. Ненцкий впервые построил структуру тема, состоящую из четырех пиррольных колец, комплексно связанных между собой атомом железа.

Природа играет в порфирины

Пиррольное кольцо (названное так по вещёству пирролу, пятичленному гетероциклическому соединению) представляет собой пятиугольник, в одном из углов которого располагается азотный остаток. Это основной структурный блок порфиринов, как называют природные пигменты, в том числе и гем.

Именно классические работы Ненцкого положили начало химии порфиринов — новой тогда области органической химии. В его лаборатории были получены некоторые модификации порфирина, служившие основой для построения гема при присоединении железа.

Работы Ненцкого, по существу, были продолжены в Германии известным химиком-органиком Хансом Эйгеном Фишером. Широкое признание ему принесли исследования пиррола и его производных, в особенности пигментов, входящих в состав крови, желчи и зелёных растений. Фишер уточнил структурные формулы порфиринов и дал им современное толкование.

Основу молекулы порфирина составляет порфин, образованный четырьмя крестообразно расположенными пиррольными кольцами. Они связаны между собой метановыми мостиками — группами углерод — водород. Таким образом получается структура, к восьми углам которой могут присоединяться различные органические соединения, называемые заместителями. Как установил Фишер, существует всего 15 теоретически возможных вариантов присоединения хвостиков-заместителей к этим восьми углам.

Не правда ли, молекула порфина несколько напоминает городошную фигуру, в центре которой имеется пустое место, как бы окошко. Так вот, об этом «окошке» разговор особый.

Молекула порфина, обросшая определёнными хвостиками-заместителями, и есть порфирин, которому присваивается номер в зависимости от одной из 15 модификаций. Из гемоглобина крови был выделен порфирии, имеющий определённый набор заместителей с девятым порядком чередования, который получил название протопорфирин-9

Интересно следующее обстоятельство. Порфирины легко образуют хелаты — металлокомплексы с ионами металлов. Как раз тут большую роль играет вакантное место в пустом окошке, которое и может занять ион металла. Если туда «заглянет» ион двухвалентного железа, то получится известный нам гем. О других же металлах разговор впереди. Сейчас скажем только, что металлопорфириновые комплексы имеют многие ферменты, некоторые витамины и биохимические переносчики электронов в клетке — цито-хромы.

Исключительная заслуга в расшифровке строения ме-таллопорфиринов принадлежит все тому же Хансу Фн-шеру. Это был прирождённый экспериментатор, который не очень-то жаловал теорию и терпеть не мог писать всяческие трактаты. Он любил повторять: «Химик принадлежит лаборатории, а не письменному столу; библиотека не должна удерживать от экспериментов, но побуждать к новым опытам». В 1929 году Фишер осуществил один из самых тонких своих экспериментов — синтезировал гемин (так называют порфириновый комплекс с трёхвалентным железом в отличие от гема — комплекса с двухвалентным железом). За это выдающееся достижение он был удостоен Нобелевской премии. Заметим, что двухвалентное железо остаётся таковым только в гемоглобине. При его разрушении и выделении гема железо окисляется до трёхвалентного. Поэтому практически дело имеют с гемином. Кстати, именно Фишер окончательно установил, что гемоглобин состоит из небелкового гема и белка глобина.

Назад Дальше