Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы - Александр Марков 17 стр.


После этого происходят совсем странные вещи: средняя кишка пережимается посередине, так что передняя часть пищеварительной системы превращается в слепой мешок, не имеющий выхода. Пища перестает поступать в ту часть кишечника, где поселились бактерии. Питаются щитники соком растений, и все съеденное всасывается без остатка, а отходы жизнедеятельности затем выводятся из полости тела при помощи особых органов (мальпигиевых сосудов) прямо в заднюю кишку.

Задняя часть средней кишки щитников превращается в инкубатор для бактерий. У самок этот отдел кишечника подразделяется на три части: в передней живут бактерии, в средней образуется питательный «наполнитель» для симбиотических капсул, а в задней образуется их оболочка. У самцов два последних отдела отсутствуют.

Исследователи обнаружили, что без симбионтов щитники жить не могут. Удаление симбиотических капсул из кладки приводит к резкому увеличению смертности личинок и замедлению роста. У двух видов клопов (из четырех исследованных) все личинки погибли поголовно. У двух других видов часть личинок все-таки доросла до взрослой стадии, но получившиеся клопы отличались мелкими размерами, бледной окраской и были неспособны к спариванию.

По-видимому, бактерии обеспечивают клопов необходимыми питательными веществами. Животные, питающиеся одним лишь соком растений, находятся в крайне трудном положении. Ведь в их пище практически отсутствуют жиры, белки, аминокислоты и многие другие необходимые вещества. На одних углеводах долго не протянешь. Правда, в растительном соке есть все элементы, необходимые для синтеза недостающих веществ, но справиться с такой сложной биохимической задачей способны только бактерии.

Как мы уже знаем, другие насекомые, питающиеся растительными соками, такие как тли и листоблошки, тоже имеют бактерий-симбионтов, передающихся вертикально — от матери к детям. Главная особенность бактериального симбионта клопов-щитников состоит в том, что он живет не внутри, а вне клеток хозяина.

Исследователи выделили из симбиотических капсул семи видов клопов молекулы ДНК бактерий-симбионтов и определили последовательность нуклеотидов в гене рибосомной РНК (16S рРНК). Этот ген традиционно используется для определения родственных связей бактерий. Оказалось, что симбионт клопов относится к группе гамма-протеобактерий, к подгруппе энтеробактерий, то есть кишечных бактерий (сюда же относится кишечная палочка), а ближайшим его родственником является та самая бухнера — симбионт тлей. Это само по себе весьма интересно, поскольку тли и клопы — родственные группы. Возможно, история клопино-бактериального симбиоза очень древняя и уходит корнями в те далекие времена, когда жили на свете общие предки тлей и клопов.

На основе сравнения нуклеотидных последовательностей рРНК исследователи построили эволюционные деревья — отдельно для клопов и для их симбионтов. Эти деревья оказались абсолютно одинаковыми.

Это означает, что эволюция клопов и их симбионтов протекала совершенно синхронно: появление нового вида клопа всегда сопровождалось появлением новой разновидности бактерии. Или, может быть, наоборот, изменение бактерии провоцировало появление нового вида клопа? Кроме того, это означает, что разные виды клопов не обмениваются между собой симбионтами. Последнее обстоятельство можно объяснить только физиологическими причинами, то есть тем, что каждая разновидность бактерии приспособлена только к клопам определенного вида, и наоборот. Дело в том, что разные виды полушаровидных щитников часто встречаются на одном и том же растении, и личинки вовсе не застрахованы от случайного поедания «чужих» капсул. Очевидно, такие ошибки плохо кончаются и для клопов, и для бактерий.

Изученная японскими исследователями симбиотическая система представляет собой исключительно удобный объект, позволяющий без всяких усилий поставить множество интереснейших экспериментов. Например, что будет, если бактерий-симбионтов разных видов клопов поменять местами? Выяснить это проще простого — достаточно скормить личинкам чужие симбиотические капсулы. С внутриклеточными бактериями, такими как бухнера, провести подобный эксперимент крайне трудно или вообще невозможно. Наверняка этот и многие другие эксперименты будут поставлены в ближайшее время, и мы узнаем еще много увлекательных подробностей о жизни шестиногих симбиотических «сверхорганизмов».

Что почитать на эту тему в Интернете

В. А. Красилов. Нерешенные проблемы теории эволюции. 1986. http://evolbiol.ru/kr.htm

В. А. Красилов. Метаэкология. 1997. http://evolbiol.ru/krasilov.htm (это насчет «эволюции с человеческим лицом»)

В. В. Малахов. Вестиментиферы — автотрофные животные. 1997. http://www.pereplet.ru/obrazovanie/stsoros/394.html

А. В. Марков. Обзор «Происхождение эукариот». http://evolbiol.ru/eucaryots.htm

А. Ю. Розанов, М. А. Федонкин. Проблема первичного биотопа эвкариот. 1994. http://evolbiol.ru/ecorozanov.htm

М. А. Федонкин. 2003. Сужение геохимического базиса жизни и эвкариотизация биосферы: причинная связь // Палеонтологический журнал. № 6. 2003. С. 33–40. http://evolbiol.ru/fedonkin2003.htm

М. А. Федонкин. Две летописи жизни: опыт сопоставления (палеобиология и геномика о ранних этапах эволюции биосферы). 2006. http://evolbiol.ru/fedonkin2006.htm

Глава 4. Рождение сложности

Порядок из хаоса

Излюбленным аргументом креационистов является утверждение о невозможности самопроизвольного развития сложных структур из простых на основе случайных изменений. Действительно, здравый смысл вроде бы подсказывает, что, сколько бы мы ни ворошили лопатой кучу мусора, ничего полезного и принципиально нового из обрывков и обломков само собой не соберется. Креационисты очень любят приводить эту аналогию (она известна во многих вариантах). Часто в этом контексте поминают также второе начало термодинамики, согласно которому якобы невозможен самопроизвольный рост упорядоченности — сам собой нарастать может только хаос.

Все это, сказать по правде, полная ерунда. Подобные рассуждения изобилуют логическими ошибками: аналогии не соответствуют объясняемому феномену, а физические законы привлекаются не к месту, то есть делается попытка применить их за пределами установленной для них области применимости. Например, второе начало термодинамики справедливо только для изолированных систем, которые не получают энергии из внешней среды. Живые организмы, напротив, всегда получают энергию извне и, расходуя часть этой энергии на повышение упорядоченности внутри себя, создают при этом порядочный хаос снаружи. Суммарная неупорядоченость (энтропия) всей системы (организм + среда) при этом растет. Поэтому никакого противоречия между развитием жизни и вторым началом термодинамики попросту не существует. Возможность самоорганизации — самопроизвольного рождения порядка из хаоса — показана экспериментально и обоснована теоретически для самых разных типов открытых неравновесных систем.

Кроме того, говоря о «случайности», якобы лежащей в основе предполагаемых механизмов эволюции, креационисты занимаются откровенным передергиванием. Они спекулируют на многозначности и расплывчатости термина «случайность». В действительности эволюция основана не на случайностях, а на вполне строгих закономерностях (о которых мы еще будем говорить). Даже мутации, которые до недавнего времени действительно было принято считать случайными, на самом деле далеко не всегда таковы (см. главу «Управляемые мутации»). Дарвиновский механизм естественного отбора сам по себе вполне достаточен для того, чтобы придать эволюционному процессу упорядоченность. Пусть даже первичные изменения (мутации) происходят случайно — благодаря действию отбора запоминание системой произошедших изменений происходит уже не случайно, а строго закономерно. Это избирательное запоминание и производит новую информацию и новую сложность. Между прочим, математикам хорошо известна так называемая S-теорема Ю. Л. Климонтовича, представляющая собой строгое математическое доказательство того, что новая информация (или «отрицательная энтропия», упорядоченность) порождается, сочетанием случайного изменения состояния системы с последующим необходимым (избирательным) запоминанием результатов изменения. Иными словами, эволюционный механизм, предложенный Дарвином, является совершенно адекватным и достаточным объяснением самопроизвольного усложнения живых систем в ходе эволюции — как с точки зрения биологии, так и с точки зрения физики и математики[44].

Чтобы убедиться своими глазами в возможности самозарождения сложного из простого, налейте в ванну воды и выньте пробку слива (тем самым превратив закрытую систему в открытую). Вскоре хаотическое движение молекул воды под воздействием силы тяжести на ваших глазах породит довольно сложную, упорядоченную структуру — воронку-водоворот. Когда видишь это впервые в жизни (я помню свое впечатление из раннего детства), возникает ощущение чуда. Почему? Да просто наше мышление так устроено: оно специализировано для целеполагания, мы привыкли планировать свои действия, ориентируясь на ожидаемый результат. Поэтому нам и кажется, что если чего-то не предусмотришь, не проконтролируешь, то ничего хорошего и не выйдет — только разруха и хаос. Раз за разом нас подводит эта «инструментальная» направленность нашего мыслительного процесса. Так, в высокоразвитых сельскохозяйственных цивилизациях Мексиканского нагорья царило убеждение, что если пустить дело на самотек, то ни солнце утром не взойдет, ни лето в положенный срок не настанет, а потому необходимо регулярно подкармливать жертвенной кровью тех светлых богов, что в непрестанной героической борьбе с силами хаоса поддерживают привычный нам миропорядок. Ныне те боги, хочется верить, уже умерли с голоду, но на смене дня и ночи это, как видим, не отразилось.

Аналогии с мусорной кучей и лопатой, или с землетрясением, которое может только разрушить здание, но никогда не соберет его из камней, или с мартышкой, которая, случайно нажимая на клавиши, никогда не напишет «Войну и мир», имеют примерно такое же отношение к эволюции, как ритуальная практика ацтеков — к вращению Земли вокруг солнца. Те эволюционные процессы, в результате которых рождается новая сложность, очень мало похожи на эти воображаемые ситуации. Если какое-то сходство и есть, то очень неполное, ограниченное отдельными признаками, поверхностное и ничего не говорящее о сути дела.

Мы уже упомянули вскользь об упорядочивающей и направляющей роли отбора и о неслучайности многих мутаций (наследственных изменений). Кроме того, «обрывки и обломки», из которых в процессе эволюции собирается новое, совсем не похожи на те разнородные предметы, которые можно обнаружить в мусорной куче.

Начать с того, что материал наследственности (ДНК), генетический код и базовая «технология» его прочтения и реализации у всех организмов одни и те же. Этот факт, между прочим, рассматривается учеными как решающее доказательство происхождения всего живого на нашей планете от единого общего предка (будь то предковый вид или предковое сообщество).

Жизненные задачи тоже у всех организмов сходны (выжить, добыть нужные вещества и энергию, вырасти, противостоять внешним разрушающим воздействиям, оставить потомство). Поэтому все имеющиеся в наличии на нашей планете фрагменты ДНК, во-первых, понятны для всего живого (могут быть более-менее адекватно прочтены и «интерпретированы» любой живой клеткой[45]), во-вторых, все они являются фрагментами устройств, сходных по своим функциям. Это резко повышает вероятность того, что случайное комбинирование фрагментов (например, в ходе горизонтального обмена генами, о котором рассказано в главе «Наследуются ли приобретенные признаки?») может породить что-то новое и осмысленное.

Была раньше такая хорошая игрушка — радиоконструктор (что-то вроде нынешнего «Лего», только из конденсаторов, ламп, катушек и прочих радиодеталей). Простые работающие устройства — такие, например, как детекторный приемник — из этого конструктора собирались с достаточно высокой вероятностью путем абсолютно случайного, произвольного соединения деталек. Этот пример показывает, что если «детальки» хороши, то даже случайное их комбинирование вполне может породить что-то полезное и жизнеспособное. А в «эволюционном конструкторе» детальки, несомненно, самого высшего сорта — отшлифованные естественным отбором, проверенные и испытанные многими поколениями живых «испытателей».

Кроме того, геном организма или отдельный ген — это далеко не «Война и мир», а нечто гораздо более помехоустойчивое. Если мы заменим случайным образом букву, слово или предложение в талантливом романе, то наверняка хоть чуть-чуть, но испортим произведение. Если мы заменим в гене нуклеотид или в белке аминокислоту, с очень большой вероятностью не произойдет абсолютно ничего плохого (более того, есть даже вполне реальный шанс, что изменение окажется полезным, но об этом чуть позже).

Белковая молекула обычно состоит из нескольких сотен аминокислот, но только очень немногие из них действительно необходимы для того, чтобы белок исправно выполнял свою функцию. Если речь идет о ферменте, то для его работы абсолютно необходимы в основном те аминокислоты, которые составляют так называемый «активный центр». Активный центр — это то место белковой молекулы, которое, собственно, и катализирует реакцию. Кроме того, могут оказаться важными и некоторые аминокислоты, определяющие пространственную конфигурацию молекулы — то, в какую фигуру она самопроизвольно «свернется» после того, как будет синтезирована. Например, в построении пространственной структуры фермента участвуют цистеины — это аминокислоты, содержащие серу, которые образуют дисульфидные мостики (-S-S-), скрепляющие между собой различные витки, лопасти и спирали белковой молекулы.

Такие принципиально важные аминокислоты составляют лишь малую часть белка. Более того, это даже не конкретные наборы аминокислот, которые должны находиться в строго определенных местах белковой молекулы, а довольно расплывчатые «рисунки», «паттерны», или, как их официально называют, мотивы.

—————

Белки с одинаковой функцией могут сильно различаться по структуре. Вот аминокислотная последовательность фермента фруктозо-бисфосфат альдолазы жгутиконосца Euglena gracilis. Это один из ферментов гликолиза — важного биохимического процесса, в ходе которого, как мы помним, клетка тратит часть энергии, заключенной в молекуле глюкозы, для синтеза двух молекул АТФ без использования кислорода. Каждая буква соответствует определенной аминокислоте (P — пролин, D — аспарагиновая кислота, F — фенилаланин, K — лизин и т. д.):


PDFPKDLKGV LDGNQVRTLF DFAQKKGFAI PAVNCTSSST VNVVLERARD THNPVIIQVS QGGAAFYCGK GVKDEKLIAS VDGSVALAHH VRAVAHTMAP VVVHSDHCAK KLLPWFDGML DADGEIFCEH GVPLFSSHML DLSEENDEED IGTCVKYFTR MAKLNLWLEM EIGMTGGVED GVDNSGVAND KLYTSSEQVF AVHKALGASS PNFSIAAAFG NVHGVYKPGN VKLQPNLLKE HQDYARKQLS SSEDHPLYLW FHGPSGSTDA EIHEAVRNGV VKMNLDTDMQ WAYWDGLRQF EAKKHDYLQG QIGNPEGPDK PNKNYYDPRK WIREAELGML ARVKVAFKAV ELPGGLKEFI GIP[46].


А вот тот же самый фермент бактерии Mycoplasma pneumoniae:


MLVNIKQMLQ HAKQHHYAVP HININNYEWA KAVLTAAQQA KSPIIVSTSE GALKYISGHQ VVVPMVKGLV DALKITVPVA LHLDHGSYEG CKAALQAGFS SIMFDGSHLP FQENFTKSKE LIELAKQTNA SVELEVGTLG GEEDGIVGQG ELANIEECKQ IATLKPDALA AGIGNIHGLY PDNWKGLNYE LIEAIAKATN LPLVLHGGSG IPEADVKKAI GLGISKLNIN TECQLAFAKA IREYVEAKKD LDTHNKGYDP RKLLKSPTQA IVDCCLEKMQ LCGSTNKA[47].


На первый взгляд заметить сходство между этими белками очень непросто. На второй, впрочем, тоже. А ведь это, по молекулярно-генетическим меркам, весьма похожие друг на друга, близкородственные белки! У них есть длинный сходный участок (от 16-й до 333-й аминокислоты первой молекулы и от 5-й до 265-й аминокислоты второй), в пределах которого совпадает целых 25% аминокислот. Кроме того, некоторые другие аминокислоты в двух белках хотя и разные, но близкие по своим химическим свойствам.


Реакция, которую катализирует фермент фруктозо-бисфосфат альдолазы.


Для того чтобы обнаружить это сходство и оценить его количественно, можно воспользоваться специальной программой BLAST, свободно доступной в Интернете по адресу http://www. ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi. Taм надо просто вставить две аминокислотные последовательности в два окошка и нажать кнопку.

Такой уровень сходства при сравнении белков представителей разных надцарств живой природы (мы сравнивали эукариот с бактериями) считается очень высоким. В данном случае, возможно, этот результат объясняется тем, что предки эвглены сравнительно недавно приобрели соответствующий ген путем горизонтального переноса от каких-то бактерий. У высших эукариот фруктозо-бисфосфат альдолазы этого семейства вообще не встречаются. У нас с вами, например, они совсем другие.

Читатель может попробовать самостоятельно сравнить между собой фруктозо-бисфосфат альдолазы различных организмов (найти их можно, например, в базе данных PFAM http://pfam.sanger.ac.uk/, осуществив поиск по ключевым словам «fructose bisphosphate aldolase»). Любой желающий может легко убедиться, что если сравнить один и тот же (по функции) фермент, взятый у человека и, допустим, у кишечной палочки Escherichia coli, то программа сравнения, скорее всего, выдаст безрадостное «no significant similarity found» — «значимого сходства не обнаружено». Это, впрочем, не значит, что никакого сходства действительно нет — оно есть (это те самые неопределенные «мотивы», о которых шла речь выше), но для его выявления необходимы более мощные аналитические средства, чем программа BLAST.

Назад Дальше