Итак, два человеческих тела на расстоянии 1 м притягиваются взаимно с силою 0,028 дины (около 40-й доли миллиграмма).
Таким же образом может быть вычислена сила взаимного притяжения и двух линейных кораблей, разделенных расстоянием в 1 км. Масса каждого корабля равна 25 000 т = 25 000 000 000 г; расстояние равно 100 000 см. Поэтому взаимное притяжение равно:
Так как 1000 дин = 1 г, то 4200 дин равны примерно 4 г.
2. Падение в мировом пространстве
Полет пушечного снаряда Жюля Верна на Луну можно рассматривать как случай падения тела в мировом пространстве под влиянием силы тяготения. Поэтому, прежде чем рассматривать условия его полета, полезно рассмотреть следующую задачу из области небесной механики.
Во сколько времени упал бы на Солнце земной шар, если бы от какой-нибудь причины прекратилось его движение по орбите?
Задачи подобного рода легко разрешаются на основании третьего закона Кеплера: квадраты времен обращения планет и комет относятся как кубы их средних расстояний от Солнца; среднее же расстояние от Солнца равно длине большой полуоси эллипса. В нашем случае мы можем земной шар, падающий прямо на Солнце, уподобить воображаемой комете, движущейся по сильно вытянутому эллипсу, крайние точки которого расположены: одна – близ земной орбиты, другая – в центре Солнца. Среднее расстояние такой кометы от Солнца, т. е. большая полуось ее орбиты, очевидно, вдвое меньше среднего расстояния Земли. Вычислим, каков должен был бы быть период обращения этой воображаемой кометы. Составим, на основании третьего закона Кеплера, пропорцию:
Период обращения Земли равен 365 суткам; среднее расстояние ее от Солнца примем за единицу, и тогда среднее расстояние кометы выразится через 1/2. Пропорция принимает вид:
Откуда
или
Но нас интересует не полный период обращения этой воображаемой кометы, а половина периода, т. е. продолжительность полета в один конец – от земной орбиты до Солнца: это и есть искомая продолжительность падения Земли на Солнце. Она равна
Итак, чтобы узнать, за сколько времени Земля упала бы на Солнце, нужно продолжительность года разделить на
, т. е. на 5,6. Легко видеть, что полученное простое правило применимо не к одной только Земле, но и ко всякой другой планете и ко всякому спутнику. Иначе говоря, чтобы узнать, за сколько времени планета или спутник упадут на свое центральное светило, нужно период их обращения разделить на
, т. е. на 5,6. Меркурий, обращающийся за 88 дней, упал бы на Солнце за 15,5 дней; Сатурн, период обращения которого равняется 30 нашим годам, – падал бы на Солнце в течение 5,5 лет. А Луна упала бы на Землю за 27,3: 5,6, т. е. за 4,8 суток. И не только Луна, но и всякое вообще тело, находящееся от нас на расстоянии Луны, падало бы к Земле в течение 4,8 суток (если только ему не сообщена начальная скорость, а падает оно, подчиняясь лишь действию одного земного притяжения).Здесь мы вплотную подходим к задаче Жюля Верна. Легко понять, что столько же времени должно лететь на Луну всякое тело, брошенное с Земли на Луну с такою скоростью, чтобы пройти как раз расстояние до Луны. Значит, алюминиевый снаряд Жюля Верна должен был бы лететь около 5 суток, если бы его хотели закинуть на расстояние Луны.
Однако члены Пушечного клуба рассчитывали закинуть снаряд не прямо на Луну, а только до той точки между Землей и Луной, где силы притяжения обоих светил уравниваются: отсюда снаряд сам уже упал бы на Луну, притягиваемый ею. Эта «нейтральная» точка находится на 0,9 расстояния от Земли.
Вычисление, следовательно, несколько усложняется. Во-первых, нужно вычислить, за сколько времени снаряд долетел бы до 0,9 расстояния между Землей и Луной, или, что то же самое, за сколько времени тело с этого расстояния упало бы на Землю; во-вторых, надо определить продолжительность падения тела от этой нейтральной точки до Луны.
Для решения первой задачи представим себе, что на 0,9 расстояния от Земли до Луны обращается вокруг нашей планеты небесное тело, и вычислим период обращения этого воображаемого спутника Земли. Обозначив неизвестный период обращения через х, составляем, на основании третьего Кеплерова закона, пропорцию
отсюда искомый период обращения
Разделив этот период на
, т. е. на 5,6, мы, согласно выведенному ранее правилу, получим время перелета снаряда от Земли до нейтральной точки: 23,3: 5,6 = 4,1 суток.Вторую задачу решаем сходным образом. Чтобы вычислить, за сколько времени снаряд упал бы с расстояния нейтральной точки до Луны, нужно сначала определить, за сколько времени снаряд, находясь на том же расстояний от Луны, совершил бы вокруг нее полный оборот. Радиус орбиты этого воображаемого спутника Луны равен 0,1 радиуса лунной орбиты, а масса центрального светила (в данном случае Луны), в 81 раз меньше массы Земли. Если бы масса Луны равнялась земной, то спутник, обращаясь на среднем расстоянии вдесятеро меньшем, чем лунное, совершил бы полный оборот в период у, легко вычисляемый по закону Кеплера:
откуда
Но так как масса, а следовательно, и притягательное действие центрального светила в данном случае в 81 раз меньше, чем в системе Земли, то время обращения снаряда спутника будет дольше. Во сколько раз? Из механики мы знаем, что центростремительное ускорение пропорционально квадрату скорости. Здесь это ускорение (производимое притяжением Луны) меньше в 81 раз, – следовательно, скорость движения снаряда по орбите должна быть меньше в
раз, т. е. в 9 раз. Другими словами, снаряд в роли лунного спутника должен обегать кругом Луны в 9 раз медленнее, чем он обходил бы на таком же расстоянии вокруг Земли. Значит, искомое время обращения равняется:
Чтобы получить продолжительность падения снаряда от нейтральной точки до Луны, нужно, как мы уже знаем, найденный сейчас период его обращения (7,77) разделить на
, т. е. на 5,6; получим 1,4 суток, а точнее – 33,5 часа [48] .
Итак, весь перелет пушечного снаряда от Земли до Луны должен был бы длиться 4,1 + 1,4 суток = 5,5 суток.
Однако это не вполне точный результат: здесь не принято во внимание то обстоятельство, что и при полете от Земли до нейтральной точки снаряд подвергается притягательному действию Луны, которое ускоряет его движение; с другой стороны, при падении на Луну он испытывает на себе замедляющее действие земного притяжения. Последнее действие должно быть особенно заметно и, как показывает более точное вычисление (по формуле, приведенной ниже), примерно вдвое увеличило бы продолжительность падения снаряда от нейтральной точки до Луны. Благодаря этим поправкам общая продолжительность перелета снаряда от Земли до Луны с 5,5 суток возрастает до 7 суток. В романе продолжительность перелета определена «астрономами Кэмбриджской обсерватории» в 97 час 13 мин 20 с, т. е. в 4 с небольшим суток, вместо 7 суток. Жюль Верн ошибся на трое суток. Ошибка произошла от того, что романист (или лицо, производившее для него расчеты) преуменьшил время падения снаряда от нейтральной точки до Луны: оно определено всего в 13 час 53 мин, между тем как это падение должно было совершиться гораздо медленнее и отнять 67 часов.
Если тело падает без начальной скорости с весьма большого расстояния Н не до центра притяжения, а до некоторого расстояния h, то продолжительность t (в секундах) такого падения вычисляется по следующей формуле, которая выводится в курсах интегрального исчисления:
Здесь H и h имеют указанные выше значения, R — радиус планеты, а — ускорение тяжести на ее поверхности. По этой формуле вычисляется также продолжительность взлета тела от расстояния h до расстояния Н, где оно должно утратить всю свою скорость.
Для примера вычислим продолжительность взлета тела, брошенного с земной поверхности на высоту земного радиуса. В этом случае Н = 2R; h = R; а = g = 9,8; R= 6370.
Имеем продолжительность взлета:Значит, ракета, пущенная вверх на расстояние земного радиуса, должна возвратиться через 69 минут.
3. Динамика ракеты
Для понимания дальнейшего необходимо отчетливо уяснить себе некоторые теоремы механики, относящиеся к «количеству движения» и к «центру тяжести». Предпосылаем поэтому нашему изложению небольшую главу из «Курса физики» Гримзеля, где положения эти разъяснены весьма наглядно и с достаточной полнотой.
___________________________________
Импульс. Количество движения
3. Динамика ракеты
Для понимания дальнейшего необходимо отчетливо уяснить себе некоторые теоремы механики, относящиеся к «количеству движения» и к «центру тяжести». Предпосылаем поэтому нашему изложению небольшую главу из «Курса физики» Гримзеля, где положения эти разъяснены весьма наглядно и с достаточной полнотой.
___________________________________
Импульс. Количество движения
Сохранение движения центра тяжести
«Сила Р сообщает свободной массе т ускорение а, которое определяется из уравнения Р = та. Если сила Р постоянна, то и ускорение, постоянно, т. е. движение – равномерно-ускоренное. Если постоянная сила Р действует на массу т в течение времени t, то она сообщает ей скорость V = at. Чтобы оценить действие силы Р за время t, мы умножим выражение силы Р = та на t. Мы получим равенство Р · t = т · v.
Произведение Р · t называется импульсом силы Р за время t. Произведение т · v называется количеством движения массы т, движущейся со скоростью v. Импульс силы равен количеству движения массы, приведенной в движение этой силой.
Если действует сила переменная, то, строго говоря, этот закон можно прилагать лишь к малым промежуткам времени t, в течение которых силу можно считать неизменяющейся. Тогда предыдущее равенство принимает вид:P · Δt = т · Av.
Понятие импульса и количества движения постоянно применяются в случаях, когда проявляются действие и противодействие.
Рис. 57. Баллистический маятник
Примером практического применения этих понятий может служить баллистический маятник, употребляемый для измерения скорости снаряда. Он состоит из большой, но податливой массы М (например, ящика с песком), которая подвешена на стержне, могущем вращаться около некоторой оси (рис. 57). В маятник стреляют снарядом, имеющим массу т, снаряд входит в песок и сообщает общей массе М + т некоторую скорость. Маятник отклоняется, и высоту его подъема h измеряют. По высоте подъема вычисляют начальную скорость маятника
.
Количество движения, приобретенное маятником (вправо), есть Mvx1; количество движения, приобретенное снарядом влево (или потерянное им, при счете вправо), равно:
т v – т v1
или
m (v – v1).Итак,
M v1 = m (v — v1),
или
mv = (M+ m) v1.
Отсюда можно вычислить v.
В левой части последнего уравнения (mv) стоит количество движения всей системы (маятник и снаряд) до выстрела, в правой части – количество движения системы после выстрела. Таким образом, количество движения системы не изменяется, если только в эту систему включены все взаимодействующие тела. Такая система называется замкнутой . Итак, в замкнутой системе количество движения остается неизменным, какие бы процессы внутри нее ни происходили. Это закон сохранения количества движения .
Другой пример представляет изображенный на рис. 58 двусторонний пистолет. На штативе горизонтально лежит медная трубка, на один конец которой навинчен массивный металлический цилиндр. Другой такой же цилиндр имеет насадку, плотно входящую в трубочку [49] . В трубке сделано отверстие для поджигания с полочкой для пороха. Насыпав на полочку и в трубку немного пороха, вставляют снаряд и кладут пистолет на штатив. Затем при помощи раскаленной проволоки поджигают порох, насыпанный на полочку; порох в трубке взрывается – оба цилиндра с насадками получают ускорения в противоположные стороны и упадут на стол в одинаковых расстояниях от штатива. Действие взрыва одинаково в обе стороны и сообщает обоим цилиндрам одинаковые скорости.
Рис. 58. Двусторонний пистолет
Повторяют опыт с различными массами. Пусть цилиндр, скрепленный с трубочкой, весит 50 г, а вставляющийся в нее – 100 г. После взрыва первый отлетает вдвое дальше второго, хотя давление взрывных газов в обе стороны одинаково.
В каком бы отношении ни находились снаряды, всегда начальные скорости снарядов обратно пропорциональны их массам и, значит, произведения масс снарядов на начальные скорости одинаковы.
Движение снарядов можно определить таким правилом: если до взрыва весь пистолет был в равновесии относительно некоторой оси вращения, то это равновесие сохраняется в каждый момент после взрыва, – причем путь обоих снарядов рассматривается как соединяющая их невесомая проволока, а вся система – как рычаг.
В самом деле, горизонтальные расстояния обоих снарядов от оси вращения в каждый момент движения обратно пропорциональны соответствующим массам, а это отвечает условию равновесия рычага. Воображаемая ось всегда проходит поэтому через центр тяжести обеих частей пистолета, так что положение центра тяжести остается неизменным (закон сохранения центра тяжести). Закон этот справедлив и для того случая, когда пистолет перед взрывом не был в покое, а двигался с постоянной скоростью. В этом случае после взрыва его части движутся так, что их общий центр тяжести продолжает свое прежнее движение с той же скоростью ( сохранение движения центра тяжести ). То же самое будет, конечно, при распаде на несколько частей – например, при движении осколков разорвавшейся гранаты или обломков распавшихся космических тел».
Движение ракеты
Рассмотрим теперь движение ракеты – сначала в среде, свободной от тяжести, а затем – в условиях тяжести.а) Движение ракеты в среде без тяжести . Ввиду фундаментального значения «уравнения ракеты» для всей теории звездоплавания приводим далее два ее вывода: один – элементарный, для незнакомых с высшей математикой, и другой – более строгий, с применением интегрального исчисления.
Пусть первоначальная масса покоящейся ракеты равна Мt . Заменим непрерывное вытекание газа из трубы рядом последовательных толчков; с каждым толчком вытекает 1/ п массы Mt ракеты со скоростью с. После первого толчка масса ракеты уменьшается до
после второго толчка остающаяся масса ракеты равна
после третьего толчка —а после k- го —
Скорость V1, приобретаемую ракетой после первого толчка, легко вычислить, исходя из того, что общее количество движения всех частей ракеты до и после разъединения одинаково, т. е. равно нулю:
откуда
Скорость v2 после второго толчка можно считать равной 2v1, т. е. , а после k- го толчка
откуда
Подставив это выражение для к в формулу
получаем
Преобразуем последнее выражение:
потому что
Выражение:
при бесконечно большом п (т. е. при переходе от толчков к непрерывному вытеканию газа) равно, как известно, 1/e где е = 2,718. Тогда преобразуемое выражение получает вид:
откуда получаем уравнение ракеты:
Укажем теперь более строгий вывод того же основного уравнения. Обозначим массу ракеты в некоторый момент через М и предположим, что до горения ракета была неподвижна. Вследствие горения ракета отбрасывает бесконечно малую часть dM своей массы с постоянною скоростью с (по отношению к ракете). При этом остальная часть массы ракеты (М– dM) получает некоторую бесконечно малую прибавку скорости dv. Сумма количества движения обеих частей ракеты должна быть, по законам механики (см. выше), та же, что и до горения, т. е. должна равняться нулю:
cdM + (М– dM)dv = О,
или, по раскрытии скобок,
cdM + Mdv – dMdv = 0.
Отбросив член dMdv как бесконечно малую второго порядка (произведение двух бесконечно малых величин), имеем уравнение:
cdM + Mdv = 0,
которое представляем в виде
Интегрируя это диференциальное уравнение, получаем:
или
Мы пришли к уравнению ракеты или ко «второй теореме Циолковского», которую он формулирует так:
«В среде без тяжести окончательная скорость (v) ракеты не зависит от силы и порядка взрывания, а только от количества взрывчатого материала (по отношению к массе ракеты) и от устройства взрывной трубы».