откуда
Итак, внеземная станция должна находиться в расстоянии 6,66 земного радиуса от центра Земли, чтобы период обращения равнялся 24 часам.
Скорость, которую нужно сообщить на Земле звездолету, чтобы он достиг орбиты такого искусственного спутника, есть скорость в точке А эллипса (рис. 59). Вычислим ее по формуле (8):
Здесь vK – скорость свободного кругового обращения небесного тела около центра Земли на расстоянии одного земного радиуса, т. е. 7,92 км/с. Следовательно, искомая скорость v Aотлета
vA = 7,92 × 1,32 = 10,5 км/с [50] .
С какой скоростью звездолет достигнет орбиты искусственного спутника? Другими словами: какова скорость в точке В эллипса, противолежащей точке А? Находим ее, пользуясь вторым законом Кеплера; так как площади, описываемые радиусами-векторами в одну секунду, равны, то10,5 × r = × 6,66 г,
откуда
Сравним ее со скоростью движения внеземной станции по своей круговой орбите; последняя скорость, очевидно, в 6,66 раз больше скорости движения точек земного экватора (0,465 км):
0,465 × 6,66 = 3,1 км/с.
Значит, звездолету понадобится еще дополнительная скорость в 3,1–1,6 = 1,5 км/с, чтобы пристать к внеземной станции.
Далее, скорость, с какою звездолет должен покинуть внеземную станцию для достижения, например, орбиты
Луны, вычислимпо формуле (8), вообразив соответствующий эллипс, охватывающий орбиту станции и касающийся изнутри орбиты Луны:
Так как скорость станции (vc) равна 3,1 км/с, то искомая скорость равна 1,34 × 3,1=4,1 км/с.
Это всего на 300 м меньше той скорости, какая нужна здесь для полного освобождения от земного притяжения
Если принять во внимание, что сама станция-спутник обладает скоростью в том же направлении, то для достижения Луны с внеземной станции понадобится лишь дополнительная скорость в 4,1–3,1 = 1 км/с.
Соответствующее отношение
масс заряженной и незаряженной ракет, при скорости вытекания газа 4000 м, равноМасса горючего должна составлять менее 1/2 массы ракеты после взрывания. Даже если мы желаем, чтобы звездолет мог возвратиться на внеземную станцию, т. е. чтобы он сохранил запас горючего, достаточный для торможения (0,28 окончательной массы), мы должны снабдить его первоначально запасом горючего, составляющим только 0,4 веса всей заряженной ракеты. Отсюда очевидна огромная выгода создания внеземной станции в смысле облегчения остальных задач звездоплавания.
6. Давление внутри пушечного снаряда
Нам придется пользоваться лишь двумя формулами равноускоренного движения, именно:
1) Скорость V в конце t-й секунды равна at, где а – ускорение:
V = at.
2) Пространство S, пройденное в течение t секунд, определяется формулой:
По этим двум формулам легко определить (разумеется, только приблизительно) ускорение снаряда, когда он скользил в канале исполинской Жюль-Верновой пушки.
Нам известна из романа длина пушки – 210 м: это есть пройденный путь» S\'. Романист указывает и скорость снаряда у выхода из орудия 16 000 м/с. Данные эти позволяют нам определить прежде всего величину t — продолжительность движения снаряда в канале орудия (рассматривая это движение как равномерно-ускоренное). В самом деле:
откуда
Итак, оказывается, что снаряд скользил внутри пушки всего 40-ю долю секунды.
Подставив t =1/40 – в формулу v = at, имеем
16 000 =a/40 —, откуда а = 640 000 м/с2.
Значит, ускорение снаряда при движении в канале равно 640 000 м/с за секунду, т. е. в 64 000 раз больше ускорения силы земной тяжести.
Какой же длины должна быть пушка, чтобы ускорение это было всего в 20 раз больше ускорения тяжести (т. е. равнялось 200 м/с2)?
Это – задача, обратная той, которую мы только что решили. Данные: а = 200 м/с2; v = 11 000 м/с (при отсутствии сопротивления атмосферы такая скорость достаточна).
Из формулы V = at имеем: 11 000 = 200 t, откуда / = 55 секундам.
Из формулы
получаем, что длина пушки должна равняться м, т. е.круглым счетом около 300 км.7. Невесомость свободно падающих тел
Положение, что свободно падающее или брошенное вверх тело ничего не весит, представляется многим настолько необычным и неожиданным, что его готовы принять за физический софизм (вывод правдоподобный, но ложный). Уместно будет поэтому указать на несколько опытов, могущих подтвердить правильность этого утверждения.
Первый опыт подобного рода, насколько мне известно, выполнен был знаменитым Лейбницем. Он привешивал к чашке весов довольно длинную, наполненную водой трубку; на поверхность воды помещал металлический шарик, пустой внутри и закрытый. Устанавливал равновесие, затем открывал отверстие плавающего шарика, шарик наполнялся водой и падал вниз. Во время движения шарика соответствующая сторона весов становилась легче, чашка с разновесками перетягивала (Фишер. «История физики»). Целый ряд опытов подобного рода был выполнен около 1892–1893 гг. известным физиком проф. H.A. Любимовым. Из этих остроумных опытов, странным образом преданных забвению [51] , укажем следующие:
1. Маятник с твердым стержнем, привешенный к вертикальной доске, отводится в сторону и удерживается в этом положении штифтом. Когда доске с этим маятникам дают свободно падать, вынув штифт, удерживающий маятник, то последний остается в отклоненном положении, не обнаруживая стремления раскачиваться [52] .
2. К такой же доске прикрепляют стеклянную трубку в наклонном положении: вверху трубки кладут на ее скошенный край тяжелый шарик, удерживаемый штифтом. В момент падения доски штифт удаляют, но шарик остается вверху трубки, не скатываясь внутрь ее.
3. На той же доске укрепляют магнит, а под ним на палочку кладут железную полоску (якорь) на таком расстоянии, чтобы магнит не мог ее поднять. Во время падения доски с магнитом и якорем последний притягивается магнитом.
4. Закон Архимеда утрачивает свое значение при падении системы. Представим себе, что в сосуд с водою погружена пробка (рис. 61). Пружина удерживает ее в воде вопреки давлению жидкости снизу вверх, повинуясь которому, пробка всплыла бы наверх. Во время падения сосуда с пробкой А этого давления снизу вверх нет (так как давление жидкости обусловлено в данном случае ее весомостью), и пробка опускается вниз (H.A. Любимов, «Из физики системы, имеющей переменное движение»).
Рис. 61. Отмена закона Архимеда в падающей системе Отметим еще одно любопытное явление: жидкость из сосуда в падающей системе, под давлением больше атмосферного, вытекает прямолинейной струей, без параболического изгибания.
«Явления того же порядка, – пишет H.A. Любимов в упомянутой выше брошюре, – могут быть наблюдаемы, в известной степени, не только при свободном падении системы, но и в системе, катящейся вниз по наклонной плоскости или качающейся. Опыты с катящейся по наклонной плоскости или качающейся системой могут быть произведены с тем большим удобством, что наблюдатель сам может поместиться в скатывающейся или качающейся системе (катиться с горы, качаться на качелях) и следить за явлением. Нет особого затруднения устроить и свободно падающую систему с помещенным в ней наблюдателем, озаботившись, чтобы падающая система – например, корзина на перекинутой через блок веревке – достигала Земли без толчка, с утраченною уже скоростью» [53] .
Вопрос этот – несмотря на элементарность – почти не затрагивается ни в учебниках, ни в большинстве общедоступных книг по физике. Укажем поэтому несколько сочинений, в которых он рассматривается с той или иной стороны (начинаем с более общедоступных):
В Л. Розенберг. Первые уроки физики. 1914. [54]
Я.И. Перельман. Занимательная физика. 1931.
Я.И. Перельман. Знаете ли вы физику? Изд. 2-е.
К.Э. Циолковский. Грезы о земле и небе. 1935.
H.A. Любимов. Из физики системы, имеющей переменное движение. 1893.
Герман Ган. Физические опыты. Русск. перевод в изд. «Физика любителя». 1911, ч. I, 48. Сила тяжести.
А. Поспелов. Об относительной потере веса тел в падающей системе. 1913.
A. Поспелов. Мир переменной весомости тел.
B. Кирпиче в. Беседы по механике.Кроме того, с иной точки зрения о том же трактуется во многих книгах, посвященных общему принципу относительности.
8. Через океан на ракете
Приводимая далее статья доктора медицины В. Шлера была помещена в немецком научном журнале «Die Umschau» в ноябре 1928 г. Под видом отчета корреспондента печати о первом рейсе ракетного самолета из Европы в Америку, состоявшемся будто бы в 1928 г., автор рисует картину будущего ракетного перелета через океан.
Рис. 62. Перелет в Америку через стратосферу
В подлиннике статья озаглавлена «В 26 минут в Америку. Отчет нашего специального корреспондента». – Перевод сделан с несущественными сокращениями.
«Стратосферный полет представителей печати назначен был на сегодня в 13 часов. Прибыв на Темпельгофский аэродром, мы были встречены членами президиума Союза звездоплавания, которые познакомили нас с особенностями ракетного полета. Аппарат, предназначенный для стратосферы, по внешности напоминает обыкновенные гражданские самолеты и отличается от них лишь размерами и толщиной несущих плоскостей, внутри которых устроены кабины для пассажиров. Между кабинами помещается ракетный аппарат с выводной трубой, глядящей отверстием назад. На самолете установлена также реактивная группа, обращенная отверстиями вперед: она служит для торможения при спуске. Имеется и пара пропеллеров, которые при старте машины поднимают ее на известную высоту, прежде чем начнет работать спиртокислородная ракета.
Мы получили объяснения по поводу важнейших предметов оборудования стратоплана – например, аппаратов для добывания и очищения искусственного воздуха, для отопления и т. п., сходных с соответствующим оборудованием подводной лодки. Входная дверь закрывается герметически, а во время полета завинчивается наглухо. Окно кабины тоже плотно примыкает к стене; стекло свинцовое, темно-коричневое. Такое окно пропускает лишь немного дневного света, так что кабина, несмотря на ясный солнечный день, освещалась электрическими лампами. Стены и потолок мягко обиты изнутри кожей, пол покрыт пробковой массой. На потолке, на стенах, у скамей имеются многочисленные ременные петли, держась за которые, мы будем передвигаться в состоянии невесомости. Особенно интересны скамьи, устроенные в кабине поперек направления полета; это вогнутые, мягкие диваны, над которыми натягивается сетка. При значительном ускорении и быстром торможении аппарата очень важно, чтобы все предметы были укреплены неподвижно, а багаж был плотно уложен в мягкие, надежно закрывающиеся ящики.
К самым ракетным аппаратам мы не были допущены, зато осмотрели помещение для пилота, которое, впрочем, мало отличалось от устройства, знакомого нам по обыкновенным самолетам, если не считать рычагов для пуска и включения ракетной группы. Заслуживают упоминания укрепленный здесь динамометр для измерения величины ускорения и замедления, затем актинометр для измерения коротковолнового излучения и прикрепленные на наружной стенке особые термометры для измерения низкой температуры стратосферы.
За объяснениями и осмотром наступило 20 минут 13-го часа; мы стали пристегивать наш багаж, разыскали наши ложа, накрылись сетками и надежно закрепили их крючками. Без 30 сек. 13 час. прозвучал сигнальный колокол, спустя 10 сек. – второй, и я с сильным сердцебиением ожидал старта. Ровно в 13 раздалась в громкоговоритель команда:
– Отчаливаем!
Одновременно донеслось жужжание пропеллеров, поднимавших аппарат с Земли. Мы летели так минуты три, когда прозвучал третий сигнальный колокол. Раздалось невероятное шипение, и я внезапно был придавлен с страшной силой к своему ложу Мне едва не сделалось дурно от этого усиленного движения. Кровь стучала в ушах; казалось, меня поборол какой-то великан. Сила, с которой напирала на мою грудь сетка, мешала мне свободно дышать, пот выступил на лбу, а связка ключей в кармане чувствительно вдавливалась в бедро. Костюм сразу стал чересчур тесен, рубашка стягивала туловище. Я сделал попытку двигать членами: рука, протянутая к карманным часам, – потому что протекшие секунды казались мне чересчур долгими, – сразу отяжелела; казалось, она весила центнер (100 кг). Потея и кряхтя, я едва мог достать свои часы. Но непривыкший к усиленной тяжести, я захватил их слишком слабо: с силою вырвались они из моей руки, проскользнули через ячейки сетки, разорвали часовую цепочку и со звоном ударились о противоположную стену. Обескураженный, я отказался от дальнейших попыток к движению и предоставил себя на волю судьбы.
Внезапно начались сильнейшие колики в области живота. Я напряг всю волю, чтобы не поддаваться боли, – как вдруг шипение ракеты умолкло. Сейчас еще меня придавливало к сетке дивана – теперь же я, как теннисный мяч, отлетел к противоположной стороне моего ложа. У меня было ощущение, будто я падаю с высокой горы в расщелину, и когда я вновь овладел своими чувствами, я крепко держался руками за сетку. Аппарат все еще казался падающим, и каждую секунду я со страхом ожидал, что ракета ударится о волны Атлантического океана.
Громкоговоритель передал голос командира:
– Двадцать минут полной невесомости. Пассажиры могут отстегнуть сетки и двигаться свободно. Держитесь постоянно за ремни, чтобы ни обо что не ударяться и не ушибить друг друга.
Я переживал удивительное ощущение никогда еще не испытанной бесплотности, словно падал под водою и утратил сознание того, где верх и где низ. Закружилась голова; казалось, вся кабина тихо вращается вокруг меня. Я почувствовал потребность покинуть свое ложе и стать на ноги. Поспешно отстегнул я свою сетку, чтобы стать на пол, – и вдруг заметил, что свободно витаю в пространстве.
Неожиданно, как опытный пловец, подплыл ко мне в воздухе служитель стратоплана и ловко ухватился за один из ремней возле моего ложа. Его появление воскресило в моей памяти физические законы, относящиеся к состоянию невесомости; вместе с тем сразу исчезли все неприятные ощущения и проснулся живой интерес к совершающимся явлениям. Пока служитель занят был улавливанием обломков моих часов, витавших в пространстве, я подтянулся к окну кабины. Когда мы были на Земле, дневной свет едва пробивался через темное стекло, – здесь же я видел сияющее Солнце, висевшее белым раскаленным шаром на черном небе. Возле самого Солнца блистали бесчисленные звезды, а неподалеку виден был серп молодого месяца. В свободной от пыли стратосфере была отчетливо видна и неосвещенная Солнцем часть лунного диска, залитая отраженным светом Земли. Яркое Солнце ослепляло меня; оно затмевало свет электрических ламп в кабине и рельефно освещало ее внутренность.
Часы показывали 13 часов 12 минут. Мы находились на высоте 50 км над земной поверхностью. Наружная температура была 54 “С ниже нуля; давление воздуха – только 1 мм ртутного столба. Хотя электрическое отопление было выключено, в кабине было довольно тепло благодаря тому, что обращенная к Солнцу наружная поверхность стратоплана была матово-черная: энергия лучей Солнца поглощалась и проводилась внутрь кабины. Подробности земной поверхности отсюда не различались: под стратопланом сияла лишь освещенная Солнцем туманная оболочка Земли.
Наступило время завтрака, но его, к сожалению, нельзя устроить на стратоплане. Хотя продвижение проглоченной пищи в пищеводе производится перистальтическими движениями, но в условиях невесомости возникает опасность, что пища, особенно жидкая, попадет «не в то горло», т. е. в дыхательное горло, оттуда в легкие и вызовет здесь воспаление. После того как во время пробного полета такое неудачное глотание стоило жизни машинисту, еда и питье в стратоплане были безусловно воспрещены. Запрещение имеет еще и другое основание: хлебные крошки, капли воды, всякого рода пыль в среде без тяжести не оседают вниз, а носятся в воздухе; неосторожность одного пассажира может совершенно засорить воздух для дыхания; пришлось бы надевать особые маски и поспешно фильтровать воздух, чтобы задержать хотя бы часть пыли.
Я осведомился, не представляет ли для нас опасности «проникающее» излучение Кольхерстера [55] . Правда, Кольхерстер сам разъяснил, что это коротковолновое излучение даже в стратосферу проникает уже в столь ничтожном количестве, что вредное действие его на человеческий организм весьма маловероятно. Но все же пассажиры стратоплана не вполне ограждены от коротковолнового излучения Вселенной, так как оно действует на фотографическую пластинку в кассете подобно рентгеновским лучам. По этой причине для окон нашей кабины и взято свинцовое стекло, до некоторой степени задерживающее коротковолновые лучи.
В 13 часов 24 минуты по громкоговорителю раздалась команда: «Вернуться к своим койкам и накрыться предохранительными сетками». Началось шипение тормозных ракет. На этот раз мне удалось легко перенести две неприятные минуты усиленной тяжести. Несчастный случай, свидетелем которого мне пришлось быть, сократил для меня этот длительно протекающий промежуток времени. Представитель спортивной прессы, сам страстный спортсмен, недооценил, по-видимому, опасностей усиленной тяжести: он отстегнул сетку, чтобы испытать это состояние на ногах. Искусственная тяжесть в нашем аппарате была в четыре раза сильнее нормальной – напряжение, которое можно переносить лишь лежа. Едва началось шипение ракет, как спортсмен судорожно схватился за ремень. Я хотел его предостеречь – но мой оклик опоздал: усиленная тяжесть вызвала прилив крови к нижней части его тела, лицо с каждой секундой становилось все бледнее, он выпустил ремень, как стрела, налетел на соседнюю стенку и остался там неподвижен.