По современным воззрениям, атмосфера расслаивается по высоте на два яруса: нижний, называемый тропосферой , и верхний – стратосферу .
Такое расчленение присуще не только атмосфере нашей планеты, но также и некоторых других – например, Венеры, Юпитера, Сатурна. Различаются оба яруса, главным образом, по признаку распределения температуры. В нижнем ярусе, в тропосфере, температура с высотой падает примерно на 1/2—1° с поднятием вверх на каждые 100 метров. В стратосфере этого не происходит: начиная от нижней ее границы, лежащей в среднем на высоте 12 км [57] , до 36 км температура стратосферы остается неизменной. Замечательно, что стратосфера над экваториальным поясом гораздо холоднее, чем над умеренным и холодным поясами: в то время как у нижней границы стратосферы в экваториальных странах отмечен мороз в 70–90 °C, в полярных странах он достигает всего 50–45 “С. (Теория, предложенная советским аэрологом П.А. Молчановым, исчерпывающе объясняет это озадачивающее явление.)
Есть основания утверждать, что выше непосредственно исследованных высот (т. е. выше 36 км) температура стратосферы повышается. На высоте 40 км она близка к нулю Цельсия; на высоте 50 км господствует почти комнатная температура (+ 17 °C), на 60 км она равна температуре человеческого тела (37 °C).
Помимо распределения температуры оба яруса атмосферы отличаются и рядом иных признаков. Тропосфера плотнее стратосферы, заключает почти всю влагу атмосферы и засорена пылью, отсутствующей в стратосфере. Август Пикар так описывает свои впечатления от пребывания в стратосфере на высоте 16 км:
«Небо – самое захватывающее из того, что мы видели. Оно совершенно темное, глубоко синее, почти черное. Так и должно быть, потому что небо содержит здесь только десятую долю той массы воздуха, который образует небо, привычное для наших глаз. Вдесятеро меньшее число молекул извлекает из белого солнечного света синюю составную часть и рассеивает ее по всем направлениям. Далее от зенита небо светлеет; к горизонту оно еще светлее… Вокруг нас голубое небо резко ограничено горизонтальной линией – границей тропосферы. Последняя видна вдали совершенно белой, подобно морю облаков. Между нами и поверхностью Земли находится 9/10 всей атмосферы (по массе). Внизу все кажется серым на сером».
Три особенности стратосферы представляют значительный интерес, не только теоретический, но и практический: 1) слой Хевисайда, 2) слой озона, 3) космические лучи.
Слоем Хевисайда называют слой стратосферы, богатый ионизованными частицами (несущими электрический заряд) и свободными электронами. Этот газовый слой непроницаем для радиоволн – обстоятельство, имеющее первостепенное значение в радиопередаче на большие расстояния; можно сказать, что только существование слоя Хевисайда делает дальнюю радиопередачу возможной.
Слой Хевисайда расчленяется на два слоя: «нижний Н-слой» на высоте 100–150 км и «верхний Н-слой» на высоте 200–800 км. Нижний слой состоит из азота и кислорода, верхний – из водорода.
Слой озона . Озон – видоизменение кислорода; молекулы его состоят из трех атомов, между тем как молекулы кислорода составлены из двух атомов. В тропосфере озона очень мало; мнение, будто им богат воздух хвойного леса, основано на недоразумении. В сколько-нибудь значительных количествах скапливается он лишь в стратосфере, на высоте – по новейшим данным – 20 км. Озонный слой имеет исключительно важное значение для обитателей земного шара: он поглощает ту часть ультрафиолетовых лучей, которая вредна для живых организмов; следовательно, слой озона обусловливает возможность существования органического мира на нашей планете.
Космические лучи – это особый род излучения, проникающий в земную атмосферу откуда-то извне, из далеких глубин Вселенной. Источник и условия возникновения этих лучей остаются пока загадкой, несмотря на давно (с 1900 г.) ведущиеся исследования. Неясна и физическая природа этих лучей, так сильно привлекающих к себе внимание ученых [58] . «Космическое излучение, – говорит один исследователь, – единственное в своем роде явление в современной физике по малости вызываемых им эффектов, по тонкости методов изучения, по смелости порождаемых им гипотез и по грандиозности выводов».
Космические лучи сильно поглощаются воздушной оболочкой Земли и потому в стратосфере проявляют свое действие значительно сильнее, чем близ земной поверхности – на высоте 16 км, например, в сотни раз.
В заключение привожу список книг на русском языке, посвященных стратосфере.Труды Всесоюзной конференции по изучению стратосферы. 1935.
П. А. Молчанов. Тропосфера и стратосфера. 1934.
П.А. Молчанов. Полеты в стратосферу. 1935.
H.A. Рынин. В стратосферу. 1934.
В.И. Виткевич. Стратосфера, ее основные свойства и методы исследования. 1935.
Ю. Бартельс. Физика высоких слоев атмосферы. 1934.
Ю. Бартельс. Высшие слои атмосферы. 1932.
Д.О. Святский. Что такое стратосфера. 1935.Подробная литература предмета приведена: русская – в книге Святского, иностранная – в книгах Бартельса.
11. Межпланетная сигнализация
В связи с вопросом о возможности межпланетных сообщений интересно коснуться и другой естественно связанной с ним темы: межпланетных сношений с помощью оптических или иных сигналов. Ограничимся здесь беглой, справкой.
Впервые в серьезной форме вопрос этот был поставлен в 20-х гг. XIX века знаменитым германским математиком Гауссом. Немецкий астроном Груитуйзен, горячий сторонник обитаемости Луны разумными существами, излагал проект Гаусса так:
«Вот основная идея Гаусса: нужно показать жителям Луны то геометрическое построение, с помощью которого обыкновенно доказывается Пифагорова теорема. Средство – культура земной поверхности где-нибудь на громадной равнине. Чтобы изобразить геометрические фигуры, нужно пользоваться контрастом между темными полосами лесов и золотисто-желтыми площадями хлебных полей. Это удобнее сделать в стране, где жители только временно пользуются обрабатываемой землей и, следовательно, легко подчинятся указаниям. Таким образом, выполнение данной мысли не потребовало бы чрезмерных затрат. Гаусс говорил об этом с глубокой серьезностью. Он придумал еще один способ завязать сношения с обитателями Луны. Способ состоит в применении гелиотропа – прибора, изобретенного Гауссом и могущего служить не только для измерения углов с весьма длинными сторонами, но и для передачи сигналов. По мысли Гаусса, нет даже необходимости составлять из зеркал громадную отражающую поверхность; достаточно известного числа хорошо обученных людей, с самыми обыкновенными зеркалами. Следует выбрать время, когда обитатели Луны наверное смотрят на Землю, – например, когда наша планета покрывает Венеру. Зеркала отбрасывают свет по направлению к Луне. Чтобы жители Луны узнали о нашем существовании, нужно прерывать этот свет через равные промежутки времени; так можно сообщить им числа, которые имеют большое значение в математике. Конечно чтобы эти знаки привлекли внимание, нужно выбрать подходящий день, когда яркость света, отраженного гелиотропом, будет особенно велика. Гаусс предпочитал математические знаки, потому что у нас и у обитателей далеких миров могут оказаться общими только основные математические понятия».
Попыток осуществить этот проект не делалось. В 1890 году много и оживленно обсуждался вопрос о сношении с помощью оптических сигналов с предполагаемыми обитателями Марса. При таком настроении умов некоторые замеченные на Марсе явления были приняты за световые сигналы. Как раз в то время, когда пылкие умы старались измыслить средства, чтобы установить сношения между планетами, некоторые наблюдатели, вооруженные весьма сильными телескопами, заметили своеобразные световые выступы на границе освещенной и ночной половин Марса. Выступы эти держались слишком долго, чтобы их можно было принять за цепь облаков; казалось, обширные области планеты начали светиться, едва над нами опускалась ночь… Для многих не оставалось сомнения, что здесь мы усматриваем огненные знаки с этого далекого мира. К сожалению, это не подтвердилось: Кемпбелл вполне понятным образом объяснил появление этих световых выступов как обширные горные области (залитые солнечным светом)… В 892 г. и 1894 г. световые места наблюдались опять. Они появлялись всего в определенных местах, именно лишь в тех желтых областях, которые астрономы считают материками. Кемпбелл дает следующее объяснение этому явлению:
«Марс находится от нас на расстоянии 63 миллионов километров. Мы могли брать увеличения в 350–520 раз, и планета приближалась к нам на расстояния в 180 000 км и 120 000 км. Расстояние Луны от нас вдвое-втрое больше. Однако мы можем просто глазом видеть на границе дневной и ночной половин светлые выступы, образуемые горными цепями и большими кратерами» (В. Мейер. Мироздание).
«Марс находится от нас на расстоянии 63 миллионов километров. Мы могли брать увеличения в 350–520 раз, и планета приближалась к нам на расстояния в 180 000 км и 120 000 км. Расстояние Луны от нас вдвое-втрое больше. Однако мы можем просто глазом видеть на границе дневной и ночной половин светлые выступы, образуемые горными цепями и большими кратерами» (В. Мейер. Мироздание).
Сходное наблюдение и толки повторялись и в декабре 1900 г., когда американский астроном Дуглас заметил на Марсе яркое пятно, державшееся в течение часа.
В недавнее время снова заговорили о проектах оптической сигнализации на Марс, опираясь на современные прожекторы, сосредоточивающие огромные количества света.
Мощные прожекторы наших авиационных маяков действительно превосходят то, о чем можно было только мечтать полтора десятка лет тому назад. Отбрасываемый ими свет, яркостью в миллиард свечей, виден невооруженным глазом с расстояния 300–400 км. Будь такой маяк на Луне, мы могли бы увидеть его свет в наши телескопы. Естественна мысль воспользоваться подобными орудиями современной осветительной техники, чтобы послать весть о себе на Марс. Как сделать, чтобы марсиане поняли этот сигнал и приписали ему то значение, которое мы хотим вложить, – именно демонстрации разумности земных обитателей? Можно, следуя проекту Гаусса, расположить яркие источники света так, чтобы они образовали определенную геометрическую фигуру, например, чертеж Пифагоровой теоремы. Если марсиане действительно настолько разумны, как мы полагаем (иначе не стоит, пожалуй, с ними и заводить сношений), они догадаются ответить нам чертежом другой теоремы – например, Гиппократовых луночек.
Трезвый расчет не оставляет, однако, никакой надежды на осуществление этих заманчивых возможностей. Чтобы земной чертеж можно было усмотреть на Марсе в телескопы нашей, примерно, силы, надо придать его линиям толщину километров в 20, а самый чертеж раскинуть на пространстве целого государства. И – что всего хуже – яркость источников должна исчисляться не миллиардами свечей, а десятками триллионов…
Если так, то нельзя ли воспользоваться в качестве источника света самим Солнцем, отражая его лучи огромными зеркалами, сооруженными где-нибудь в Сахаре или в Бразилии? Однако пришлось бы придать этому зеркалу невероятные размеры: оно должно быть в десятки километров поперечником. Это во-первых. Второе возражение серьезнее. Сторонники этого проекта забывают о том, как расположены по отношению друг к другу обе планеты в период наибольшего сближения. Ведь тогда Земля и Марс находятся по одну сторону от Солнца, на одной прямой линии с ним. В эти моменты Земля как раз обращена к Марсу своей ночной половиной и мы можем отбросить солнечные лучи куда угодно, только не на Марс…
Изобретение беспроволочного телеграфа направило мысль о межпланетных сношениях на новый путь. Особенно много говорилось об этом в конце 1900 года, когда знаменитый американский электротехник Тесла сообщил, что ему удалось заметить загадочные электрические сигналы при производстве опытов на большой высоте.«Тесла наблюдал, – читаем мы в английском научном журнале в 1901 г., – на специальном приборе повторные электрические колебания, причина которых заставляла его теряться в догадках. Он пришел к мысли, что они обязаны своим происхождением токам, идущим от планет, и теперь полагает, что было бы вполне возможно посредством усовершенствованного аппарата сноситься с их обитателями».
Далее, со слов Тесла, сообщалось, что он приступает к постройке аппарата, который даст возможность послать на Марс количество энергии, достаточное для воздействия на электрические приемники вроде телеграфов и телефонов.
«Я не сомневаюсь, – писал Тесла, – что с помощью надлежащим образом построенного аппарата возможно переслать энергию на другие планеты, например, на Марс и Венеру, даже при наибольшем их удалении от Земли. Мой метод даст практическое разрешение вопроса передачи и получения сообщений с планет».
Однако это предположение ни к чему не привело, и вызванная заявлением Тесла оживленная полемика в печати вскоре прекратилась [59] .
Оживление интереса к этой проблеме наступило вновь лишь в самое последнее время. В 1920 и 1922 гг. неоднократно отмечались случаи приема радиостанциями таких сигналов, для которых, по некоторым соображениям, затруднительно допустить земное происхождение; это обстоятельство, – в связи с тем, что сигналы наблюдались как раз в эпохе наибольшей близости Марса к Земле, – побудило искать станцию отправления загадочных сигналов именно на этой планете.
В 1920 г. в Анды (Южная Америка) были направлены лучшие радиотехники Маркониевой компании с особо чувствительными приемниками, настроенными на длину волны 300 км (почему-то предполагалось, что марсиане работают именно на этой волне). Но никаких сигналов принято не было. «Все приборы, – гласило официальное сообщение, – настроенные на длину волны в 300 000 м, не обнаружили никаких признаков радиоволн в момент нахождения Марса на ближайшем расстоянии от Земли». Столь же безрезультатна была экспедиция самого Маркони в Средиземное море для уловления предполагаемых сигналов (также в 1920 г.) и попытки принять сигналы Марса на 24-ламповый приемник во время «великого противостояния» 1924 г.
Не было недостатка и в проектах обратного сигнализирования по радио – с Земли на Марс. В том, что марсиане располагают радиоприемником, у авторов проектов не возникало сомнения. Затруднение было лишь в том, чтобы достичь взаимного понимания человечеств обеих планет. Небезызвестный немецкий физик-популяризатор Ганс Доминик в своей книге «В волшебном мире техники» [60] предлагает осуществить взаимное понимание следующим образом:«Мы могли бы, например, – пишет Г. Доминик, – протелеграфировать в пространство величины сторон первых Пифагоровых треугольников – скажем, числа 3,4 и 5, потому что З2 + 42 = 52. Со стороны мыслящих, математически образованных существ можно было бы ждать только одного ответа на такую телеграмму, а именно чисел 5, 12 и 13, потому что 52 + 122 = 132. Такой ответ сразу установил бы между обеими планетами контакт. Простые Пифагоровы числа могли бы уже послужить поводом договориться насчет особых знаков для понятий плюс, минус, равенство. Следующим шагом было бы установление какой-нибудь общей системы координат. Обладая ею, можно было бы при помощи простых числовых телеграмм обмениваться всевозможными изображениями. Уже спустя несколько недель по установлении такой связи мы могли бы здесь располагать портретами жителей Марса».
Оставляя в стороне фантастические возможности, рассмотрим, какие физические и технические трудности стоят на пути к осуществлению радиосвязи с планетами на практике.
Прежде всего надо указать, что хотя на земной поверхности для современного радиотелеграфа более не существует уже непреодолимых расстояний, передаваться вверх электрические волны могут беспрепятственно всего лишь на сотню или на две километров. Дело в том, что на высоте 100–800 км простирается слой разреженной атмосферы, отличающейся от нижележащих слоев значительною электропроводностью. Этот так называемый «слой Хевисайда» – непрозрачен для электрических волн большой и средней длины: он частью отражает падающие на него электрические лучи назад, частью поглощает их, не выпуская наружу Газовый экран, охватывающий земной шар непроницаемой оболочкой, прозрачен до некоторой степени лишь для электрических лучей, которые направлены к точке зенита, – но энергия ослабленных волн, проникающих через зенитное окошечко, чересчур ничтожна, чтобы заставить работать аппараты отдаленных станций. Только волны короче 10 м могут проникать через слой Хевисайда и покидать нашу планету Но здесь для передачи сигналов на Марс возникает новое препятствие. Допустим, – ради внесения определенности в задачу, – что чувствительность марсовых приемников одного порядка с чувствительностью самых совершенных земных аппаратов; тогда для успешной передачи сигнала на Марс потребовалась бы, согласно вычислениям специалистов, радиотелеграфная станция не менее чем в 20 000 000 киловатт… Вспомним, что сильнейшая радиостанция мира – наш «Коминтерн» – обладает мощностью только в 500 киловатт.
Подобные затруднения, вероятно, возникли бы и для обитателей Марса, если бы они пожелали установить радиосвязь с нами, – их электрические волны, уже проникшие через слой атмосферы Марса, должны были бы отразиться от непроницаемой для электрических лучей наружной оболочки нашей атмосферы. Недавно полученные (И.Е. Муромцевым, инженером электрической компания «Вестингхауз») ультракороткие радиоволны длиною 42 см вовсе не отражаются слоем Хивисайда. Они могут свободно покидать земной шар и глубоко проникнуть в мировое пространство. Так как они, к тому же, не расходятся во все стороны, а могут быть направлены узким пучком, то энергия их не ослабевает с расстоянием. Естественно поэтому, что многие смотрят на них как на удобное средство для установления радиотелеграфной связи с Марсом (хотя инженеры «Вестингхауза» не разделяют этих оптимистических надежд).