Такой трюизм, как «мир полон вещами, которые обладают свойствами, позволяющими им находиться в этом мире», выглядит банальным, почти глупым, пока мы не попытаемся применить его к особому виду долговечности — долговечности в форме линии множества копий. Долговечность ДНК-сообщений отлична и от долговечности скал, и от различного вида «появлябельностей», типа росинок. Для молекул ДНК это высказывание про «свойства, позволяющие им находиться в мире», совсем не очевидно и тавтологично. «Свойства, позволяющие им находиться в мире», оказывается, включают в себя способность строить механизмы, подобные вам и мне — наиболее сложные вещи в известной нам вселенной. Давайте посмотрим, почему это может быть так.
Принципиально важно то, что вышеуказанные свойства ДНК оказались основными ингредиентами, необходимыми для организации процесса нарастающего отбора. В наших компьютерных моделях третьей главы, мы преднамеренно включали в модель основные компоненты нарастающего отбора. Чтобы нарастающий отбор действительно возник в мире, должны появиться некоторые сущности, свойства которых реализуют эти основные компоненты. Давайте посмотрим, что это за компоненты. При этом мы будем иметь в виду, что эти компоненты, по крайней мере в какой-то зачаточной форме, должны были возникнуть на ранней Земле спонтанно, иначе нарастающий отбор, и следовательно — жизнь, никогда не начнёт своё шествие по Земле. Здесь мы говорим не конкретно о ДНК, но об основных ингредиентах, необходимых для возникновения жизни где-нибудь во Вселенной.
Пророк Иезеркиль проповедовал в долине костей этим костям и побудил их соединиться вместе. Затем он проповедовал скелетам, и обрели они жилы и плоть. Но в них всё ещё не было духа. Главный компонент, компонент жизни, отсутствовал. На мёртвой планете есть атомы, молекулы и большие глыбы материи, хаотично толкающиеся и сливающиеся друг с другом, согласно законам физики. Иногда законы физики заставляют атомы и молекулы соединяться вместе подобно сухим костям Иезеркиля, иногда — заставляют их раскалываться розно. Могут образовываться довольно большие агрегации атомов, но они же могут снова крошиться и разламываться. Но от этого в них не появляется душа. Иезеркиль воззвал к четырём ветрам, чтобы они вселили живой дух в сухие кости. Но какой, в нашем случае, такой чудодейственный ингредиент должен присутствовать на мёртвой планете, подобной ранней Земле, чтобы у неё появился шанс в конечном счёте породить жизнь? Это не дух, не ветер, не какой-то эликсир или микстура. Это вообще не материя, а это свойство, свойство самокопирования. Это свойство — базовый ингредиент нарастающего отбора. Повинуясь обычным законам физики, где-то как-то должны возникнуть самокопирующиеся сущности, которые я буду называть репликаторами. В современной живой материи репликаторами являются почти исключительно молекулы ДНК, но ими может быть что угодно, с чего можно делать копии. Можно подозревать, что первыми репликаторами на изначальной Земле были не молекулы ДНК. Маловероятно, чтобы зрелая молекула ДНК начала существование без помощи других молекул, которые обычно существуют только в живых клетках. Вероятно, первые репликаторы были грубее и проще, чем ДНК.
Есть два других необходимых ингредиента, которые в норме будут автоматически сопровождать первый ингредиент — самокопирование. Во-первых, при самокопировании должны иметь место случайные ошибки; даже система ДНК изредка допускает ошибки, и представляется вероятным, что первые репликаторы на Земле ошибались намного больше. И во-вторых, по крайней мере некоторые репликаторы, должны иметь власть над своим будущим. Последний ингредиент выглядит более зловещим, чем он есть. На деле это означает, что некоторые свойства репликаторов должны влиять на вероятность их дальнейшего копирования. В какой-то примитивной форме, этот ингредиент будет, вероятно, неизбежным следствием самого факта самокопирования.
Тогда с каждого репликатора будут сделаны его копии. Каждая копия подобна оригиналу и имеет те же самые свойства. Среди этих свойств, разумеется, присутствует способность создания (иногда с ошибками) большого количества копий самого себя. Так что каждый репликатор — потенциально «прародитель» неопределённо длинной линии репликаторов-потомков, протянувшейся в отдалённое будущее и потенциально ветвящейся для производства чрезвычайно большого количества репликаторов-потомков. Каждая новая копия должна изготавливаться из сырья, меньших строительных блоков, толкающихся вокруг. Возможно, репликаторы играют роль некоего шаблона или матрицы. Меньшие компоненты вовлекаются в матрицу таким образом, что получается её дубликат. Затем дубликат выходит на свободу, и уже сам способен играть роль такой матрицы. Следовательно, здесь имеет место потенциально расширяющаяся популяция репликаторов. Популяция не может расти неограниченно, потому запасы сырья, меньших элементов, пригодных для вовлечения в матрицу, в конечном счете, ограничены.
Теперь рассмотрим второй ингредиент. Иногда копирование будет неточным — будут происходить ошибки. Вероятность ошибок невозможно полностью исключить при любом копировании, хотя вероятность их можно сделать низкой. Именно за это борются изготовители высококлассных аудиосистем; как мы видели, процесс репликации ДНК впечатляюще хорош в деле снижения количества ошибок. Но современная репликация ДНК — это высокотехнологичный процесс, со сложными методами коррекции ошибок, который совершенствовался в ходе многих поколений нарастающего отбора. Мы видели, что первые репликаторы были, вероятно, относительно грубыми приспособлениями с не очень высокой точностью копирования.
Теперь вернёмся к нашей популяции репликаторов и посмотрим, каков будет эффект от неточного копирования. Очевидно, что вместо однородной популяции идентичных репликаторов, будет наблюдаться смешанная популяция. Вероятно, многие из продуктов неточного копирования окажутся потерявшими свойство саморепликации, которым обладал их «родитель». Но немногие, сохранив свойство саморепликации, будут при этом отличаться от родителя в каком-то другом отношении. Поэтому в популяции будут присутствовать копии ошибок. Вероятно, слово «ошибка» вызывает у вас уничижительные ассоциации, но в данном случае, оно означает ошибку с точки зрения верности копирования. Поэтому ошибка может привести к усовершенствованию. Осмелюсь полагать, что многие новые изысканные кушанья были созданы вследствие ошибок, допущенных поварами в попытках следования рецептам. Могу утверждать, что новые оригинальные научные идеи, были иногда в какой-то мере недоразумениями или ошибочным прочтением идей других людей. Вернёмся к нашим древним репликаторам. В то время, как большинство ошибочных копий, вероятнее всего, привели к снижению эффективности копирования или к полной потере этой способности, некоторые из них могли бы превосходить в способности к саморепликации материнский репликатор, породивший их.
Что означает «лучше»? В конечном итоге это означает более эффективную саморепликацию, но как это могло бы выглядеть практически? Тут мы подходим к нашему третьему «ингредиенту». Я упомянул его как «власть», и через мгновение вы увидите почему. Когда мы уподобляли репликацию сборке на матрице, то мы видели, что последним шагом этого процесса должен быть выход на свободу новой копии со старой матрицы. Потребное на это время может зависеть от свойства, которое я буду называть «клейкость» старой матрицы. Предположим, что в нашей популяции репликаторов, которые варьируют из-за былых ошибок копирования их «предков», некоторые вариации оказались более клейкими, чем другие. Очень клейкие вариации цепляются за каждую новую копию более часа — и лишь затем отпускает её на свободу, дабы процесс начался снова. Менее клейкие вариации отпускают каждую новую копию через долю секунды с момента её формирования. Какая из этих вариаций будет преобладать в популяции репликаторов? Ответ несомненен. Если это единственное свойство, которым отличаются эти две вариации, то вариация клейких неизбежно будет гораздо менее многочисленной в популяции. Неклейкая производит свои копии в тысячи раз быстрее клейкой. У вариаций с промежуточной клейкостью будет промежуточный темп самораспространения. Будет иметь место «эволюционная тенденция» к снижению клейкости.
Нечто подобное такому элементарному естественному отбору было повторено в пробирке. Существует вирус Q-бета, который паразитирует на бактерии — кишечной палочке Escherichia coli. У Q-бета нет ДНК, но он содержит, а точнее — в значительной степени состоит, из единственной нити родственной ей молекулы РНК. РНК способна к копированию почти так же, как и ДНК.
В нормальной клетке белковые молекулы собираются по спецификациям, записанным в РНК. Они играют роль рабочих чертежей, скопированных с драгоценного главного архива клетки — ДНК. Но возможен и специальный механизм — как и остальные клеточные механизмы, это белковая молекула, которая делает копии РНК с других копий РНК. Такой механизм называется молекулой РНК-репликазы. Для самой бактериальной клетки эти механизмы обычно бесполезны, и она их не строит. Но так как репликаза — всего лишь белковая молекула, подобная любой другой, то универсальные механизмы построения белков бактериальной клеткой можно легко использовать для её постройки — как станки на автомобильном заводе в военное время могут быть быстро перенацелены на создание боеприпасов: всё, что для этого требуется — это передать соответствующие чертежи. Именно это вирус и делает. Рабочая часть вируса — РНК-чертёж. Внешне он неотличим от любого другого РНК-рабочего чертежа, которые плавают в клетке, отойдя от главной ДНК бактерии. Но если вы прочтёте маленькую распечатку вирусной РНК, то вы найдёте там кое-что дьявольское. Эти буквочки разъясняют план создания РНК-репликазы: для создания механизмов, которые производят большее количество копий того же самого РНК-проекта, которые делают ещё большее количество таких механизмов, которые делают ещё и ещё большее количество копий планов, которые делают большее количество …
Нечто подобное такому элементарному естественному отбору было повторено в пробирке. Существует вирус Q-бета, который паразитирует на бактерии — кишечной палочке Escherichia coli. У Q-бета нет ДНК, но он содержит, а точнее — в значительной степени состоит, из единственной нити родственной ей молекулы РНК. РНК способна к копированию почти так же, как и ДНК.
В нормальной клетке белковые молекулы собираются по спецификациям, записанным в РНК. Они играют роль рабочих чертежей, скопированных с драгоценного главного архива клетки — ДНК. Но возможен и специальный механизм — как и остальные клеточные механизмы, это белковая молекула, которая делает копии РНК с других копий РНК. Такой механизм называется молекулой РНК-репликазы. Для самой бактериальной клетки эти механизмы обычно бесполезны, и она их не строит. Но так как репликаза — всего лишь белковая молекула, подобная любой другой, то универсальные механизмы построения белков бактериальной клеткой можно легко использовать для её постройки — как станки на автомобильном заводе в военное время могут быть быстро перенацелены на создание боеприпасов: всё, что для этого требуется — это передать соответствующие чертежи. Именно это вирус и делает. Рабочая часть вируса — РНК-чертёж. Внешне он неотличим от любого другого РНК-рабочего чертежа, которые плавают в клетке, отойдя от главной ДНК бактерии. Но если вы прочтёте маленькую распечатку вирусной РНК, то вы найдёте там кое-что дьявольское. Эти буквочки разъясняют план создания РНК-репликазы: для создания механизмов, которые производят большее количество копий того же самого РНК-проекта, которые делают ещё большее количество таких механизмов, которые делают ещё и ещё большее количество копий планов, которые делают большее количество …
Так фабрика оказывается захваченной террористами — этими корыстными чертежами. В некотором смысле она объявляла во всеуслышание, что её можно захватить. Если вы снабжаете вашу фабрику механизмами настолько совершенными, что они могут делать всё, что угодно, что им велит любой чертёж, то вряд ли удивительно, что рано или поздно появляется чертёж, который велит этим механизмам делать копии самого себя. Фабрика все более наполняется этими злодейскими механизмами, производящими в большом количестве злодейские чертежи по созданию большего количества механизмов, которые будут делать большее количество самих себя. Наконец, несчастная бактерия взрывается и выпускает миллионы вирусов, которые будут инфицировать новые бактерии. Это обычный жизненный цикл вирусов в природе.
Я назвал РНК-репликазу и РНК соответственно механизмом и чертежом. Это так в некотором смысле и есть; мы обсудим другие аспекты в другой главе, но они при этом ещё и молекулы, и люди-химики могут очистить их, разлить в бутылки и хранить на полке. Именно это и делал Золь Шпигельман с коллегами в Америке в 1960-х годах. Они помещали эти две молекулы вместе в раствор, начинались завораживающие вещи. В пробирке, с помощью РНК-репликазы, молекулы РНК действовали как матрицы для синтеза копий себя. Механизмы и чертежи были экстрагированы и хранились в холодильнике отдельно друг от друга. Затем, как только они получили доступ друг к другу, а также к маленьким молекулам, необходимым в качестве сырья, растворённым в воде, так оба вернулись своим старым злодейским штучкам — даже несмотря на то, что они были в пробирке, а не в живой клетке.
Этот эксперимент — всего лишь короткий шаг к воспроизведению естественного отбора и эволюции в лаборатории; химическая версия компьютерных биоморфов. Моделирование естественного отбора производилось в длинном ряду пробирок, каждая из которых содержала раствор РНК-репликазы и сырьё — маленькие молекулы, потребные для синтеза РНК. В каждой пробирке имеются «станки» и сырьё, но пока она пребывает в бездействии, не имея чертежа, по которому им нужно работать. Теперь капнем крошечное количество самой РНК в первую пробирку. Аппарат репликазы сразу же включается в работу и производит большое количество копий только что введённых молекул РНК расплывшихся по пробирке. Затем капля раствора из первой пробирки переносится во вторую. Процесс повторяется во второй пробирке, затем капля из неё переносится в третью, и так далее.
Иногда, из-за случайных ошибок копирования, спонтанно возникает чуть отличная мутантная молекула РНК. Если — неважно за счёт чего конкретно, новая вариация оказывается конкурентоспособнее старой, — возможно, вследствие её низкой «клейкости», она реплицируется быстрее или как-то иначе более эффективно, то новая вариация очевидно распространится в пробирке, в которой она возникла, превзойдя численностью родительский тип, её породивший. Тогда, капля раствора из этой пробирки, предназначенная для переноса в следующую, будет содержать новую вариацию мутантов, которая даст начало следующей «породе». Исследовав рибонуклеиновые кислоты в длинном ряду пробирок, мы увидим, что такое есть эволюционные изменения. Конкурентно превосходящие вариации РНК, произведенные в конце нескольких пробирочных «поколений» можно разлить в бутылки, подписать для будущего использования. Например, одна вариация под названием V2 копируется намного быстрее нормальной РНК Q-беты, возможно, потому, что она меньше. В отличие от РНК Q-беты, ей можно не «беспокоиться» насчёт планов производства репликазы — репликаза уже есть в растворе стараниями экспериментаторов. РНК V2 использовалась в качестве отправной точки для интересного эксперимента Лесли Оргела и его коллег в Калифорнии, в котором они создавали ей «трудную» окружающую среду.
Они добавляли к пробиркам яд — бромид этидия, который ингибирует синтез РНК, обволакивая «станки». Оргел и коллеги начали с разбавленного раствора яда. Сначала темп синтеза был замедлен ядом, но после примерно девяти «пробирочных поколений» эволюции, отселектировалась новая порода РНК, стойкая к яду. Темп синтеза РНК был теперь сопоставим с таковым для нормальной РНК V2 при отсутствии яда. Тогда Оргел удвоил концентрацию яда. Снова темп репликации РНК понизился, но после следующего десятка поколений, снова вывелась порода РНК, иммунная к даже на более высокой концентрации яда. Тогда концентрация яда была удвоена снова. Так, последовательным удвоением концентрации, они сумели «вывести породу» РНК, которая могла самокопироваться при очень высоких концентрациях бромида этидия, вдесятеро больших той, что ингибировала оригинальную прародительскую РНК V2. Они назвали эту новую, стойкую РНК как V40. Эволюция V40 от изначальной V2 потребовала 100 пробирочных поколений (конечно, фактически поколений РНК-репликации было больше, т. к. они происходили и в пределах одной пробирки).
Оргел также проделывал эксперименты, в которых никакого фермента не добавлялось. Он нашёл, что молекулы РНК могут спонтанно самокопироваться и в этих условиях, хотя и очень медленно. Похоже, им нужна какая-то другая каталитическая сущность, например, цинк. Это важное наблюдение, потому что мы не можем предполагать, что на заре жизни, когда репликаторы только что возникли, в окружающей среде присутствовали ферменты, помогающие им реплицироваться. Впрочем, вероятно, присутствовал цинк.
Дополнительный эксперимент был проведён десять лет назад в лаборатории влиятельной немецкой школы Манфреда Ейгена, работающей над изучением происхождения жизни. В этой работе в пробирке присутствовали и репликаза, и строительные блоки, но раствор не засевался молекулами РНК. Однако в пробирке спонтанно развивалась именно такая же большая молекула РНК, и процесс этот многократно происходил в последующих независимых экспериментах! Тщательная проверка показала, что экспериментальный материал никак не мог быть случайно инфицирован молекулами РНК извне. Это очень красноречивый результат, если вы изучаете статистическое неправдоподобие многократного спонтанного возникновения одной и той же большой молекулы. Этот результат статистически намного менее вероятен, чем напечатать наобум «METHINKS IT IS LIKE A WEASEL». Как и эта фраза в нашей компьютерной модели, конкретная одобренная молекула РНК, была создана постепенной, нарастающей эволюцией.
Вариации полученной неоднократно в этих экспериментах РНК имели тот же самый размер и структуру, как и молекулы полученные Шпигельманом. Но примите во внимание, что Шпигельман развивал РНК, «вырождая» встречающуюся в природе, большую вирусную РНК Q-бета, а РНК группы Эйгена создала себя из почти ничего. Эта конкретная формула хорошо приспособлена к окружающей среде, состоящей из пробирок, содержащих готовую репликазу. И потому-то результат конвергентно сходится в ходе нарастающего отбора из двух очень различных отправных точек. Большие молекулы РНК Q-беты менее приспособлены к среде пробирки, но более — к среде, обеспечиваемой клетками E. coli. Подобные эксперименты помогают нам осознать полностью автоматический и непреднамеренный характер естественного отбора. Механизмы репликации «не знают», почему и зачем они изготавливают молекулы РНК: это действие — лишь побочный продукт их структуры. И сами молекулы РНК не разрабатывают стратегий изготовления своего дубля. Даже если б они могли мыслить, то нет никаких причин полагать, что у некоей мыслящей сущности есть стимулы производить копии самой себя. Если б я даже и знал, как сделать копию самого себя, то я не уверен, что дал бы этому проекту высокий приоритет по отношению ко всем другим вещам, которыми я хотел бы заниматься: зачем мне это надо? Но понятие мотивации неприменимо к молекулам. Просто структура вирусной РНК оказалась такой, что она заставляет клеточные машины производить большие количества копий самой себя. И если любая сущность где-нибудь во Вселенной случайно обретёт свойство хорошо создавать большие количества копий самой себя, то очевидно, что всё больше и больше копий этой сущности будут появляться автоматически. И не только это. Так как они автоматически сформируют наследственные линии и будут иногда делать ошибки копирования, то благодаря мощным процессам нарастающего отбора, более поздние версии будут, вероятно, «лучше» создавать свои копии, чем ранние. Всё это крайне просто и автоматично. И столь предсказуемо, что почти неизбежно. «Успешная» молекула РНК в пробирке успешна вследствие какого-то прямого, присущего ей своего свойства, как-то аналогичного «клейкости» моего гипотетического примера. Но свойства, подобные «клейкости» довольно скучны. Это элементарные свойства самого репликатора, свойства, которые прямо воздействуют на вероятность их репликации. А что если репликатор оказывает некоторый эффект на кое-что ещё, что воздействует на кое-что ещё, что воздействует на кое-что ещё, что … в конечном счёте косвенно воздействует на шансы репликатора быть скопированным? Легко видеть, что пока такие длинные цепи причинной обусловленности действительно существуют, фундаментальный трюизм остаётся в силе. Репликаторы, которые так или иначе, имеют то, что требуется для репликации, стали бы преобладать в мире, независимо от длины и косвенности цепи причинных связей, посредством которых они влияют на свою вероятность самокопирования. И следовательно, мир заполнится звеньями в этой причинной цепи. Мы будем видеть эти связи и восхищаться ими.