Слепой часовщик - Ричард Докинз 3 стр.


Теперь, если рассмотреть все возможные варианты сваливания воедино камней Монблана, мы можем сказать: да, верно только один из них является Монбланом — таким, каким мы его знаем. Но наш Монблан был определён ретроспективно. Любой из очень многих вариантов сборки камней воедино может быть назван горой и мог бы быть назван Монбланом. Нет ничего особенного в том конкретном Монблане, который мы знаем, ничто в нём не предусмотрено заранее, ничего эквивалентного взлетающему самолёту или открывающейся дверце сейфа с деньгами, с кувырканием вылетающим вслед за ней.


В чём может выражаться сходство открывающейся дверцы сейфа или полёта самолета, с живым телом? Знаете, иногда это сходство почти буквально. Ласточки летают. Мы видели, как нелегко слепить из случайных частей летающую машину. Если бы вы взяли все клетки ласточки и слепляли бы их наугад, то шанс на то, что получившийся объект мог летать, практически не отличался бы от нуля. Не все живые существа летают, но они делают другие невероятные вещи, невероятные в смысле их предзаданности. Киты не летают — они плавают, и плавают так же эффективно, как летают ласточки. Шансы на то, что случайное скопление клеток кита плавало бы, уж не говоря о плавании столь же быстром и эффективном как у настоящего кита, ничтожны.


А вот здесь какой-нибудь философ с орлиным зрением (у орла очень зоркие глаза — вы не смогли бы сделать глаз ястреба, хаотично смешивая вместе хрусталики и ретиноциты!), начнёт бормотать что-нибудь насчёт циркулярного аргумента[1]. Ласточки летают, но не плавают; киты плавают, но не летают. Мы ретроспективно оцениваем успех нашей случайной конгломерации как пловца или как лётчика. Предположим, что мы соглашаемся оценивать его успех как X, оставляя открытым вопрос о том, что именно означает этот X, пока мы не попытались соединить клетки вместе. Наша случайная глыба клеток может оказаться эффективным роющим животным — типа крота, или эффективным лазателем — типа обезьяны. Она могла бы быть очень хороша в виндсерфинге, в выжимании промасляной ветоши или в ходьбе по сходящейся в ноль спирали… Список можно продолжать бесконечно…или нельзя?


Если бы список действительно можно было продолжать бесконечно, то мой гипотетический философ был бы прав. Если, вне зависимости от того, насколько беспорядочно вы разбросали материю где-то, получившуюся конгломерацию можно будет ретроспективно назвать подходящей для чего-нибудь, тогда было бы правомерно утверждать, что я жульничал насчёт ласточки и кита. Но у биологов имеется намного более конкретный взгляд на проблему, чем абстрактное утверждение о «полезности для чего-нибудь». Чтобы признать объект животным или растением, мы должны как минимум потребовать, чтобы оно преуспело в той или иной борьбе за существование (точнее — этот объект или, как минимум — некоторые члены его вида, должны жить достаточно долго, чтобы суметь размножиться). Верно — существует множество способов быть живым — полёт, плавание, раскачивание на деревьях и так далее. Однако, как бы ни было много способов быть живым, без сомнения имеется неизмермо больше способов быть мёртвым или скорее неживым, чем живым. Вы можете снова и снова смешивать клетки наугад в течение миллиарда лет и не раз будете получать конгломерацию, которае летает, или плавает, или роет норы, или бегает, или делает что-нибудь (хотя бы очень плохо), что можно было бы с какой-то натяжкой трактовать как деятельность по поддержанию жизни. В этот вопрос можно было бы углубляться весьма долго, но сейчас самое время напомнить себе, с чего мы начали. Мы искали способ точно выразить то, что мы подразумеваем, когда ссылаемся на нечто, как на сложный объект. Мы пытались точно выяснить, что именно люди, кроты, дождевые черви, воздушные лайнеры и часы имеют общего друг с другом, чего они не имеют с бланманже, Монбланом или луной. И мы пришли к выводу, что сложные объекты обладают неким качеством, заранее предопределённым, которое с крайне малой вероятностью могло быть приобретено благодаря одиночному случайному событию. В случае живого существа, это определённое заранее качество можно в некотором смысле назвать «мастерством»; любое мастерство в конкретной способности — такой как полёт, которым авиаконструктор мог бы восхищаться; или мастерство в кое-чём более общем, таком, как способность избегать смерти или способность распространять свои гены в ходе размножения.


Предотвращение смерти — это цель, над достижением которой требуется работать. Тело, предоставленное самому себе — что происходит после его смерти — стремится вернуться к состоянию равновесия с окружающей его средой. Если вы измерите какой-нибудь параметр — такой, как температуру, кислотность, содержание воды или электрический потенциал в живом теле, то чаще всего вы обнаружите его заметное отличие от соответствующего значения в окружающей среде. Например, наши тела обычно теплее окружающей нас среды, и в холодном климате им приходится упорно работать над поддержанием этой разности. Когда мы умираем, эта работа останавливается, разность температур начинает исчезать, и мы в конце концов обретаем ту же температуру, что и наша среда. Не все животные так же усердно трудятся над избежанием выравнивания температуры своего тела с внешней температурой, но все животные проделывают некую сопоставимую работу. К примеру, в сухом климате животные и растения трудятся над сохранением содержания жидкости в своих клетках, действуя против естественной тенденции воды утекать от них в сухой внешний мир. И если они терпят неудачу в этой деятельности, то они умирают. И вообще, живые существа, не проявляющие активности по предотвращению этого выравнивания, в конечном счёте сливаются со своей средой и прекращают существование как автономные сущности. Именно это происходит, когда они умирают.


За исключением искусственных механизмов, которых мы уже согласились расценивать некими почётными живыми существами, неживые объекты не активны в этом смысле. Они не сопротивляются силам, которые стремятся привести их в равновесие с окружающей их средой. Конечно, Монблан существует уже очень долго, и, вероятно, будет продолжать существовать ещё какое-то время, но он не делает ничего, чтобы продолжить своё существование. Когда камень приходит в состояние покоя под действием силы тяжести, то он в нём и остаётся. Никакой работы не требуется, чтобы продолжать его. Монблан существует и будет продолжать существование, пока эрозия не сотрёт его, или его не разрушит землетрясение. Он не предпринимает шагов по восстановлению износа или трещин или к восстановлению самого себя после разрушения — как раз того, что делают живые тела. Он лишь подчиняется простым законам физики.


Но следует ли из этого, что живые существа не подчиняются законам физики? Конечно, нет. Нет никаких причин полагать, что законы физики нарушаются в живой материи. Не существует ничего сверхествественного, никакой «жизненной силы», конкурирующей с фундаментальными физическими силами. Но если вы попытаетесь использовать законы физики в их банальной форме для понимания поведения всего живого тела, то вы скоро обнаружите, что продвинулись очень мало. Тело — сложный объект, состоящий из многих многокомпонентных частей, и чтобы понять его поведение, вы должны применить законы физики к этим частям, а не к целому. Тогда поведение всего тела проявится как следствие взаимодействия частей.


Возьмём, к примеру, законы движения. Если вы бросите мёртвую птицу в воздух, то она опишет изящную параболу, точно такую, какая должна быть по описаниям в книгах по физике, затем придёт в состояние покоя на земле и останется там. Она поведёт себя так, как должно вести себя твёрдое тело с данной массой и данным аэродинамическим сопротивлением. Но если вы бросите в воздух живую птицу, то она не будет описывать параболу и приходить в состояние покоя на земле. Она улетит и может не коснуться земли по эту сторону от границы графства. А всё потому, что у неё есть мышцы, работающие на противодействие силе тяжести и другим физическим силам, действующим на всё тело. Законам физики подчинется каждая мышечная клетка, в результате чего мышцы двигают крыльями таким образом, что птица остаётся в воздухе. Птица не нарушает закон всемирного тяготения. Её постоянно тянет вниз сила тяжести, но её крылья выполняют активную работу — повинуясь законам физики в своих мышцах — и поддерживают её в воздухе несмотря на силу тяжести. Нам будет казаться, что этот факт бросает вызов физическому закону только в том случае, если мы настолько наивны, что будем трактовать птицу просто как бесструктурную глыбу материи некоторой массы и аэродинамического сопротивления. Только когда мы осознаем, что она имеет множество внутренних частей, каждая из которых повинуется законам физики на своём уровне, то мы поймём поведение всего тела. Конечно, это особенность не только живых существ. Эти соображения применимы ко всем искусственным механизмам и, в принципе. применимы к любому сложному, многочастному объекту.

Так мы подходим к заключительной теме, которую я хочу обсудить в этой, скорее философской главе — проблеме того, что мы подразумеваем под объяснением. Мы выяснили, что следует считать сложной вещью. Но какое объяснение удовлетворит нас, если мы спросим, как действует сложный механизм или живое тело? Ответ на него мы дали в предыдущем абзаце. Если мы желаем понять, как действует механизм или живое тело, то мы рассматриваем его составные части и интересуемся, как они взаимодействуют друг с другом. Если некую сложную вещь мы ещё не понимаем, мы можем попробовать понять её в терминах более простых частей, работу которых мы уже понимаем.


Когда я спрашиваю инженера, как работает паровая машина, то я достаточно правомерно желаю получить общий ответ, который бы меня удовлетворил. Меня, как и Юлиана Хаксли, определённо не обрадует расплывчатое утверждение инженера про движение «силою пара». И если он начнёт занудные рассуждения о том, что целое — это больше, чем сумма слагающих его частей, я его, скорее всего, прерву: «Не углубляйтесь в философию — лучше скажите мне, как это работает». При этом я хотел бы услышать что-нибудь насчёт того, как детали двигателя взаимодействуют друг с другом, чтобы получилось наблюдаемое поведение всего двигателя. При этом я должен быть уже готов к восприятию объяснений в терминах весьма крупного блока, собственная внутренняя структура и поведение которого могли бы быть весьма сложны, и пока что не объяснены. Блоки, работу которых требовалось бы удовлетворительно объяснить в первую очередь, могли бы называться топкой, испарителем, цилиндром, поршнем, золотником. Инженер рассказал бы без предварительных объяснений, что делает каждый из блоков. Я принял бы его объяснения сразу, не расспрашивая далее, как именно этот блок делает свою специфическую работу. Зная, какую именно конкретную работу делают блоки, я смогу тогда понять, как они взаимодействуют, чтобы весь двигатель порождал энергию движения.


Конечно, я волен далее спросить, как работает каждая из деталей. Уже поняв тот факт, что золотник перекючает поток пара, и использовав это знание для понимании поведения всего двигателя, я теперь обращаю моё любопытство на сам золотник. Теперь я хочу понять, как он реализует своё собственное поведение — в терминах его внутренних деталей. То есть, имеется иерархия подблоков в пределах блоков. Можно объяснить поведение компонента на любом данном уровне, в понятиях его взаимодействий с другими подкомпонентами, собственную внутреннюю организацию которых на данный момент можно полагать как данность, некий «чёрный ящик». Мы расчищаем себе путь вниз иерархии, пока не достигаем блоков настолько простых, что более не ощущаем потребность (для наших текущих целей) задавать про них вопросы. Например, правильно это или нет, но большинство людей вполне удовлетворено свойством железных стержней быть твёрдыми; мы готовы использовать это свойство для объяснения более сложных машин, в конструкции которых они применяются.


Конечно, физики не воспринимают железные стержни как данность. Они задаются вопросом, почему они твёрдые, и продолжают расчищать иерархию ещё на несколько слоёв, до элементарных частиц и кварков. Но жизнь слишком коротка, чтобы многие из нас следовали их примеру. Для данного уровня организации сложности, удовлетворительного объяснения обычно можно достичь, углубляясь в иерархию вниз на один или два слоя от нашего исходного, не больше. Поведение автомобиля с двигателем внутреннего сгорания вполне объяснимо в терминах цилиндров, карбюраторов и свечей зажигания. Да, верно — каждый из этих компонентов находится вверху пирамиды объяснений более низких уровней. Но если вы спросите меня, как работает автомобиль, то вы сочтёте меня надменным снобом, если я отвечу вам на уровне законов Ньютона или законов термодинамики, и даже мракобесом, если я отвечу вам на уровне элементарных частиц. То, что в своей основе поведение автомобиля объясняется взаимодействиями между элементарными частицами, несомненно. Но намного полезнее объяснять его на уровне взаимодействий между поршнями, цилиндрами и свечами зажигания.


Поведение компьютера можно объяснять на уровне взаимодействий между полупроводниковыми электронными ключами, а их поведение, в свою очередь, физики объясняют на ещё более низких уровнях. Но в большинстве практических случаев вы бы просто впустую тратили время, если бы попытались понять поведение всего компьютера на любом из названных уровней. Электронных ключей слишком много, и слишком много соединений между ними. Удовлетвительное объяснение возможно лишь на уровне обозримо невеликого количества взаимодействий. Вот почему, когда мы хотим понять работу компьютера, мы предпочитаем обзорное объяснение на уровне примерно полудюжины основных блоков — оперативная память, процессор, долговременная память, блок управления, адаптеры ввода-вывода и т. д. После того, как мы поймём взаимодействие между полудюжиной основных компонентов, у нас может возникнуть желание задавать вопросы насчёт внутренней организации уже их самих. Вероятно, только инженеры узкой специализации углубятся до уровня схем «И» и «НЕ», и только физики углубятся далее, на уровень поведения электронов в кристалле полупроводника.


Люди, любящие приклеивать ярлыки «-измов», вероятно, назовут мой подход к пониманию работы чего-либо «иерархическим редукционизмом». Если вы читаете фешенебельные журналы для интеллектуалов, то вы, возможно, заметили, что «редукционизм» — это одно из тех понятий, которые (как, например, «грех») упоминают только люди, осуждающие его. Объявить себя редукционистом — это примерно то же, что признать себя людоедом (в определённых кругах, конечно). Но поскольку никто из нас не людоед, то никто из нас не является и настоящим редукционистом в каком-то веском смысле этого слова. Редукционист — это некто, которому все возражают, и кто существует только в воображении критиков. Этот мифический редукционист пытается объяснить сложные вещи прямо на уровне мельчайших частиц, и даже, в некоторых экстремальных версиях мифа, как сумму частей! С другой стороны — иерархический редукционизм объясняет сложную сущность на некотором конкретном уровне иерархии сложности, в терминах сущностей, лежащих только на один уровень ниже в иерархии; сущностей, которые сами по себе, вероятно, достаточно сложны, чтобы нуждаться далее в редукции до их собственных составных частей; и так далее. Это само собой разумеется — хотя мифический, людоедский редукционист имеет репутацию отрицателя того факта, что объяснения, адекватные на высоких уровнях в иерархии, весьма отличаются от объяснений, адекватных на низких. Именно это и имеется в виду, когда мы предпочитаем объяснение автомобиля на уровне карбюраторов, но не кварков. Но иерархический редукционист полагает, что карбюраторы можно объяснить в терминах меньших блоков…, которые объясняются в терминах ещё меньших…, которые в конечном счёте объясняются в терминах наименьших из элементарных частиц. Редукционизм, — в этом смысле, есть лишь другое название для честного желания понять, как что работает.


Мы начали этот подраздел вопросом о том, какое объяснение сложных вещей удовлетворило бы нас. Мы только что рассмотрели вопрос с точки зрения механизма: как это работает? Мы заключили, что поведение сложных объектов нужно объяснять в терминах взаимодействий между их составными частями, рассматриваемыми как последовательные слои иерархии. Но есть и вопрос другого вида — как сложная вещь впервые появилась. Этим вопросом вся наша книга интересуется особенно пристально, поэтому я не буду здесь об этом много говорить. Я лишь замечу, что здесь применяется тот же самый общий принцип, что и в понимании работы механизма. Сложная вещь — это вещь, существование которой мы не склонны полагать само собой разумеющимся, потому что она слишком «невероятна». Она не могла появиться в результате одного случайного события. Мы объясним её появление как результат постепенных, нарастающих, пошаговых преобразований более простых вещей, от изначального объекта, достаточно простого, чтобы он мог возникнуть случайно. Точно так же, как «редукционизм больших шагов» не работоспособен для объяснения работы механизма и должен быть заменён на серию маленьких пошаговых погружений вниз по иерархии, так мы не можем объяснить возникновение сложной вещи в единственном акте. Мы должны снова обратиться к серии мелких шагов, только уже разложенных последовательно во времени. Оксфордский физический химик Питер Аткинс свою красиво написанную книгу «Творение» начинает так:

Я возьму вашу мысль в путешествие. Это будет путешествие познания, путешествие на край пространства, времени и понимания. В нём я докажу, что в мире нет ничего, что невозможно понять, нет ничего, что было бы невозможно объяснить, и что всё в мире — необычно просто… много чего во Вселенной не нуждается в каком-то объяснении. Например, слоны. Раз уж молекулы научились конкурировать и создавать другие молекулы по своему образу и подобию, то слоны, и им подобные создания, неизбежно окажутся бродящим по саванне.

Назад Дальше