Волны и галька являются простым примером системы, которая автоматически генерирует какую-то упорядоченность. Наш мир полон таких систем. В качестве простейшего примера я могу предложить отверстие. Через отверстие могут проходить только объекты меньшие его. Это означает, что, если вы начнёте хаотично собирать объекты над отверстием и с какой-то силой трясти и толкать их в случайных направлениях, то через какое-то время объекты выше, и объекты ниже отверстия приобретут неслучайную отсортированность. Пространство ниже отверстия будет склонно содержать объекты, меньшие отверстия, а пространство выше — большие. Конечно же, человечество уже давно использует этот простой принцип генерации неслучайности в таком полезном устройстве, как сито.
Солнечная система — это устойчивая система из планет, комет и разных осколков, вращающихся по орбитам вокруг Солнца; возможно, это одна из многих таких систем во Вселенной. Чем ближе такой спутник к своему солнцу, тем быстрее он должен двигаться по орбите, чтобы противостоять его притяжению и оставаться на устойчивой орбите. Для любой заданной орбиты существует только одна скорость, с которой спутник может двигаться, оставаясь на этой орбите. Если он приобретёт любую другую скорость, то или улетит в глубокий космос, или врежется в Солнце, или перейдёт на другую орбиту. И если мы посмотрим на планеты нашей солнечной системы, то увидим, что каждая из них двигается с именно той скоростью, чтобы держатся на своей устойчивой орбите вокруг Солнца. Что это — благословенное чудо преднамеренного проекта? Нет — лишь другое естественное «сито». Очевидно, что все планеты, которые мы видим на орбитах вокруг Солнца, должны двигаться со строго определённой скоростью, чтобы держаться на своих орбитах — в противном случае мы бы не видели их там, потому что их бы там не было! Но столь же очевидно, что это не есть свидетельство сознательности проекта. Это — лишь другой вид сита. Но отсеивания такого порядка из исходного беспорядка само по себе недостаточно, чтобы объяснить массовую упорядоченность, которую мы видим у живых существ — даже отдалённо. Вспомните аналогию с кодовым замком. Упорядочивать простым просеиванием — примерно то же самое, что открывать кодовый замок с одним диском: он легко открывается при минимальном везении. Живые системы эквивалентны гигантскому кодовому замку с почти неисчислимым количеством дисков. Изготовление биологической молекулы, такой, как гемоглобин (красный пигмент крови), простым просеиванием было бы эквивалентно тому, чтобы смешивать наугад все аминокислотные остатки гемоглобина в надежде, что молекула гемоглобина спонтанно воссоздастся по счастливой случайности. Степень везения, которая бы потребовалась для этого подвига, невероятна и образно названа Айзеком Азимовым «мысленным монстром».
Трёхмерная молекула гемоглобина состоит из четырёх переплетающихся аминокислотных цепей. Давайте рассмотрим только одну из них. Она состоит из 146 аминокислот. Всего в живой материи встречается 20 различных аминокислот. Количество возможных способов взаимосоединения 20 видов звеньев в цепь из 146 штук длиной — это немыслимо большое число, которое Азимов назвал «числом гемоглобина». Его легко вычислить, но невозможно представить. Первым звеном этой цепи из 146 звеньев могла быть любой из 20 возможных аминокислот. Вторая также могла быть любой из этих же 20, всего возможных вариантов двухзвенной цепи — 20 x 20 = 400. Количество возможных вариантов трёхзвенной цепи — 20 x 20 x 20 = 8000. Количество возможных вариантов 146-звенной цепи — 20 умноженное само на себя 146 раз. Это потрясающе большое число. Миллион — это единица с 6 нулями. Миллиард (1000 миллионов) — единица 9 нулями. Искомое нами «число гемоглобина», это, округлённо — единица 190 нулями! Один против этого числа — вот наш шанс натолкнуться на гемоглобин наудачу. А ведь сложность молекулы гемоглобина — ничтожная часть сложности живого тела. Очевидно, что само по себе простое просеивание даже отдалённо не способно к созданию той упорядоченности, что имеется в живом существе. Просеивание — это существенный компонент в генерации живой упорядоченности, но это далеко-далеко не весь рассказ. Нужно ещё кое-что. Чтобы пояснить эту мысль, мне будет нужно подчеркнуть различие между «одноразовым» и «нарастающим» отбором. Простые сита, которые мы пока рассматривали в этой главе — это всё примеры одноразового отбора. Организация живой материи — это плод нарастающего отбора.
Принципиальное различие между одноразовым и нарастающим отбором состоит вот в чём. При одноразовом отборе отбираемые или сортируемые объекты — гальки или что бы то ни было ещё — сортируются раз и навсегда. При нарастающем отборе, напротив, они «размножаются»; или как-то иначе передают результаты одного просеивания в последующее просеивание, которое передает его далее …, и так бесконечно. Объекты подвергаются отбору или сортировке в течение многих последовательных поколений. Конечный продукт одного поколения — отправная точка отбора следующего поколения, и так много раз. Применение таких слов как «воспроизводство» и «поколение», которые мы ассоциируем с живыми существами естественно, ибо живые существа — главные примеры известных нам сущностей, участвующих в нарастающем отборе. На практике они, возможно, единственные сущности, которые в нём участвуют. Но в этот момент я не хочу ставить вопрос столь жёстко.
Облака, под действием хаотичных порывов ветра, принимают форму, похожую на знакомые нам предметы. Есть публикация большой фотографии, сделанной пилотом маленького самолета, на которой облако выглядело как лицо Иисуса, пристально глядящего с неба. Все мы видели облака, которые напомнили нам что-нибудь — скажем, морского конька или улыбающееся лицо. Эти совпадения возникли в результате одноразового отбора, то есть — совпадение было единственным. Следовательно, они не очень выразительны. Подобие зодиакальных созвездий тем животным, в честь которых они были названы — Скорпион, Лев и так далее, столь же невыразительны, как и предсказания астрологов. Мы не видим при этом такого ошеломляющего подобия, какое мы видим в биологических адаптациях — продукте нарастающего отбора. Подобие насекомого листу растения или подобие богомола соцветию розовых цветов мы описываем как сверхъестественное, жуткое или захватывающее. Подобие облака хорьку только слегка развлекает и достойно лишь привлечения внимания нашего компаньона. Не говоря уж о том, что мы, весьма вероятно, тут же изменим своё мнение насчёт того, на что это облако похоже точнее.
Гамлет: Видите вы вон то облако в форме верблюда?
Полоний: Ей-богу, вижу, и действительно, ни дать ни взять верблюд.
Гамлет: По-моему, оно смахивает на хорька.
Полоний: Правильно: спинка хорьковая.
Гамлет: Или как у кита.
Полоний: Совершенно как у кита.[7]
Я не знаю, кто сказал первым, что при наличии достаточного времени обезьяна, беспорядочно стучащая по клавишам пишушей машинки, смогла бы когда-нибудь напечатать все произведения Шекспира. Ключевая фраза здесь, конечно, «при наличии достаточного времени». Давайте несколько сузим задачу, стоящую перед нашей обезьяной. Предположим, что ей нужно воспроизвести не все произведения Шекспира, а только короткое предложение «Methinks it is like a weasel» («По-моему, оно смахивает на хорька»), и облегчим её работу, предоставив ей пишущую машинку с клавиатурой, состоящей только из 26 букв (заглавных) и клавиши пробела. Сколько времени ей потребуется, чтобы написать это небольшое предложение?
Предложение состоит из 28 символов, так что давайте предположим, что обезьяна будет производить серию попыток, состоящих из 28 ударов по клавиатуре. Если она напечатает фразу правильно, то это будет окончанием эксперимента. Если нет, то мы предоставляем ей другую 28-символьную «попытку». У меня нет знакомых обезьян, но, к счастью, моя 11-месячная дочь — опытный генератор случайных символов, она лишь продемонстрировала слишком большое нетерпение, чтобы продвигаться в работе обезьяны-машинистки поэтапно. Вот что она напечатала на компьютере:
UMMK JK CDZZ F ZD DSDSKSM
S SS FMCV PU I DDRGLKDXRRDO
RDTE QDWFDVIOY UDSKZWDCCVYT
H CHVY NMGNBAYTDFCCVD D
RCDFYYYRM N DFSKD LD K WDWK
JJKAUIZMZI UXDKIDISFUMDKUDXI
Поскольку у дочери есть другие важные дела, то роль такой машинистки я поручил компьютерной программе, имитирующей беспорядочно печатающего младенца или обезьяну:
WDLDMNLTDTJBKWIRZREZLMQCO P
Y YVMQKZPGJXWVHGLAWFVCHQYOPY
MWR SWTNUXMLCDLEUBXTQHNZVJQF
FU OVAODVYKDGXDEKYVMOGGS VT
HZQZDSFZIHIVPHZPETPWVOVPMZGF
GEWRGZRPBCTPGQMCKHFDBGW ZCCF
И так далее в том же духе. Несложно подсчитать, как долго нам придётся ждать, пока генератор случайных символов (младенец или обезьяна) напечатают «METHINKS IT IS LIKE A WEASEL». Оценим общее количества возможных фраз заданной длины, которые обезьяна, младенец или генератор случайных символов могли бы напечатать. Вычисления будут теми же самыми, какие мы делали для гемоглобина, и приведут к аналогично большому результат. На первой позиции этой строки возможно 27 возможных символов (включая символ пробела). Шанс, что обезьяна, напечатает букву «M» прямо следует из количества символов — 1 из 27. Шанс, что вторая буква будет «E» аналогичен шансу, что первая буква будет «M», а шанс, что первые две буквы будут «ME» равен их произведению 1/27 x 1/27, что даст 1/729. Шанс на то, что первое слово будет «METHINKS» — это шанс на появление каждой буквы на своём месте — 1/27 для каждой, итого (1/27) x (1/27) x (1/27) x (1/27) … и так далее 8 раз, то есть (1/27) в степени 8. Шанс на получение всей этой фразы из 28 символов, есть (1/27) в степени 28, то есть (1/27) умножимое само на себя 28 раз. Это очень маленький шанс, примерно 1 из 10000 миллионов миллионов миллионов миллионов миллионов миллионов. Искомую фразу, таким образом придётся ждать, мягко говоря, долго, не говоря уж о всех произведениях Шекспира.
WDLDMNLTDTJBKWIRZREZLMQCO P
Y YVMQKZPGJXWVHGLAWFVCHQYOPY
MWR SWTNUXMLCDLEUBXTQHNZVJQF
FU OVAODVYKDGXDEKYVMOGGS VT
HZQZDSFZIHIVPHZPETPWVOVPMZGF
GEWRGZRPBCTPGQMCKHFDBGW ZCCF
И так далее в том же духе. Несложно подсчитать, как долго нам придётся ждать, пока генератор случайных символов (младенец или обезьяна) напечатают «METHINKS IT IS LIKE A WEASEL». Оценим общее количества возможных фраз заданной длины, которые обезьяна, младенец или генератор случайных символов могли бы напечатать. Вычисления будут теми же самыми, какие мы делали для гемоглобина, и приведут к аналогично большому результат. На первой позиции этой строки возможно 27 возможных символов (включая символ пробела). Шанс, что обезьяна, напечатает букву «M» прямо следует из количества символов — 1 из 27. Шанс, что вторая буква будет «E» аналогичен шансу, что первая буква будет «M», а шанс, что первые две буквы будут «ME» равен их произведению 1/27 x 1/27, что даст 1/729. Шанс на то, что первое слово будет «METHINKS» — это шанс на появление каждой буквы на своём месте — 1/27 для каждой, итого (1/27) x (1/27) x (1/27) x (1/27) … и так далее 8 раз, то есть (1/27) в степени 8. Шанс на получение всей этой фразы из 28 символов, есть (1/27) в степени 28, то есть (1/27) умножимое само на себя 28 раз. Это очень маленький шанс, примерно 1 из 10000 миллионов миллионов миллионов миллионов миллионов миллионов. Искомую фразу, таким образом придётся ждать, мягко говоря, долго, не говоря уж о всех произведениях Шекспира.
Так долго получается в случае одноразового отбора случайной вариации. Теперь рассмотрим нарастающий отбор — насколько он будет эффективнее? Очень и очень намного! Гораздо эффективнее, чем мы, возможно, себе представляем в первый момент, хотя это почти очевидно, если мы подумаем над этим чуть более. Мы снова используем нашу компьютерную обезьяну, но внесём критическое изменение в программу. Она, как и раньше, снова начинает, выбирая случайную последовательность из 28 букв:
WDLMNLT DTJBKWIRZREZLMQCO P
Однако теперь она «размножает» эту случайную фразу. Она реплицирует её неоднократно, но с некоторой вероятностью случайной ошибки — «мутации» при копировании. Компьютер исследует мутировавшую бессмысленную фразу, «потомка» первоначальной, и выбирает ту, которая более всего (хотя бы чуть-чуть) походит на нашу искомую фразу, «METHINKS IT IS LIKE A WEASEL». В данном случае, в следующем поколении победила такая фраза:
WDLTMNLT DTJBSWIRZREZLMQCO P
Улучшение неочевидное! Но процедура повторилась, и снова мутировавший «потомок» «вывелся» от последней фразы, и отобран новый «победитель». И так поколение за поколением. После 10 поколений, фраза, выбранная на роль «производителя» была такой:
MDLDMNLS ITJISWHRZREZ MECS P
А вот что было после 20 поколений:
MELDINLS IT ISWPRKE Z WECSEL
А вот здесь глаз уже не может на заметить некоторого подобия искомой фразе. В 30-м поколении в подобии можно уже не сомневаться:
METHINGS IT ISWLIKE B WECSEL
На 40-м поколении — мы в одной букве от цели:
METHINKS IT IS LIKE I WEASEL
И вот цель наконец достигнута в 43-м поколении.
Второй прогон компьютер начал с фразы:
Y YVMQKZPFJXWVHGLAWFVCHQXYOPY
Результаты прогона были таковы (снова приводится только каждое десятое поколение):
Y YVMQKSPFTXWSHLIKEFV HQYSPY
YETHINKSPITXISHLIKEFA WQYSEY
METHINKS IT ISSLIKE A WEFSEY
METHINKS IT ISBLIKE A WEASES
METHINKS IT ISJLIKE A WEASEO
METHINKS IT IS LIKE A WEASEP
И конечная цель достигнута в поколении 64. Третий прогон компьютер начал с фразы:
GEWRGZRPBCTPGQMCKHFDBGW ZCCF
И достиг «METHINKS IT IS LIKE A WEASEL» в 41-м поколении селективного «размножения».
Точное время, затраченное компьютером на достижение цели, значения не имеет. Но если вы настаиваете, то он закончил весь первый прогон за время, пока я завтракал — то есть, примерно полчаса. (Энтузиасты-компьютерщики могут счесть, что это неправдоподобно долго. Но дело в том, что программа была написана на БЕЙСИКЕ — это язык программирования для младенцев. Когда я переписал её на Паскале, то она стала выполняться за 11 секунд). Компьютеры в этих делах несколько быстрее обезьян, но разница действительно не имеет значения. Значение имеет разница между временем нарастающей селекции и временем, потребным тому же самому компьютеру, работающему с той же скоростью, на достижение целевой фразы, если мы заставим его использовать другую процедуру — процедуру одноразового отбора: это примерно миллион миллионов миллионов миллионов миллионов лет. Это в миллион миллионов миллионов раз больше времени существования Вселенной. Фактически разумнее говорить, что в сравнении с временем, потребным, неважно кому — хоть обезьяне, хоть компьютерному генератору случайных символов, для генерации нашей целевой фразы, возраст Вселенной — столь ничтожная величина, что на практике утонет в погрешностях данного рода вычислений. В то же время, компьютерному генератору случайных символов, но работающему по алгоритму нарастающего выбора, для выполнения той же самой задачи потребуется совершенно обозримое время — от 11 секунд до длительности спокойного завтрака.
Различие между нарастающим отбором (при котором каждое улучшение, пусть небольшое, используется как фундамент для будущей постройки) и одноразовым выбором (при котором каждая новая «попытка» делается «с нуля»), просто неимоверно огромно. Если бы эволюционный прогресс полагался на одноразовый отбор, то он никогда и нигде не имел бы места. Однако, если где-нибудь и как-нибудь слепые силы природы создадут условия для нарастающего отбора, то необыкновенные и удивительные последствия не заставят себя ждать. Собственно говоря, именно это и произошло на нашей планете, и мы с вами — одно из новейших, и может быть — самое необыкновенное и удивительное из этих последствий. Просто поразительно, как можно всё ещё полагать вычисления, вроде наших вычислений «числа гемоглобина» аргументами против теории Дарвина. Люди, так полагающие, часто эксперты в своей сфере — астрономии или где-то ещё, похоже, вполне искренне полагают, что дарвинизм объясняет организацию живой материи в терминах «спонтанности» — одного только «одноразового отбора». Вера в то, что дарвиновская эволюция «спонтанна», не просто ложна. Это точная антитеза правды. Случай — второстепенный компонент в дарвиновском рецепте, главнейший же — нарастающий отбор, который принципиально неслучаен.
Облака не способны к нарастающему отбору. Не существует механизма, посредством которого облака какой-то конкретной формы могли бы передавать дочернему облаку сходство с собой. Если бы такой механизм имелся, если бы облако, похожее на хорька или верблюда могли бы порождать линию других облаков примерно той же самой формы, то нарастающий отбор имел бы возможность продвижения. Конечно, облака дробятся и иногда формируют «дочерние» облака, но для нарастающего отбора этого недостаточно. Также необходимо чтобы «потомок» любого данного облака походил на своего «родителя» больше, чем он походит на любого чужого «родителя» в «популяции». Этот жизненно важный момент очевидно искажённо истолковывался некоторыми философами, которые в последние годы проявили интерес к теории естественного отбора. Кроме того, необходимо, чтобы шансы данного облака на выживание и порождение потомков зависели от его формы. Возможно, в какой-нибудь отдалённой галактике эти условия действительно возникали, и результатом этого могла быть, если прошло достаточное количество миллионов лет, некая воздушная, утончённая форма жизни. Это могло бы быть хорошим научно-фантастическим рассказом — его можно было бы назвать «Белое облако», но для нашей задачи, компьютерная модель — такая, как модель «обезьяна-Шекспир», легче для понимания.
Хотя модель «обезьяна-Шекспир» полезна для объяснения различий между одноразовым и нарастающим отбором, она в некоторых важных отношениях вводит в заблуждение. Одно из них состоит в том, что, в каждом поколении селективного размножения, мутантные фразы-потомки оценивались по критерию сходства с отдалённой идеальной целью, фразой «METHINKS IT IS LIKE A WEASEL». Жизнь не такова. Эволюция не имеет никаких долговременных целей. Не существует никаких отдалённых целей, никакого финального совершенства, которое могло бы служить критерием отбора, хотя человеческое тщеславие и лелеет абсурдную мысль о том, что наш вид является заключительной целью эволюции. В реальной жизни критерий для отбора всегда краткосрочен — это простое выживание; или строже говоря — репродуктивный успех. То, что по прошествии геологических эпох ретроспективно выглядит как движение к достижению какой-то отдалённой цели, на деле же — всегда побочное следствие многих поколений краткосрочного отбора. Наш «часовщик» — нарастающий естественный отбор — слеп к будущему и не имеет никаких долговременных целей.
Мы можем изменить нашу компьютерную модель, чтобы принять во внимание этот момент; мы можем также сделать её более реалистичной в других отношениях. Буквы и слова — узкочеловеческие явления, так что давайте научим компьютер рисовать картины. Может быть, мы даже увидим очертания, подобные животным, эволюционирующим в компьютере посредством нарастающего отбора мутантных форм. Мы не будем навязывать своих представлений, предлагая начать с какого-нибудь конкретного животного. Мы хотим, чтобы они появились исключительно в результате нарастающего отбора случайных мутаций.