В позднем Средневековье сохраняется появившееся у арабов разделение на астрономов-математиков, которые пользовались системой Птолемея, и врачей-философов, последователей Аристотеля. Среди астрономов XV в., в основном немецких, следует отметить Георга Пурбаха и его ученика Йоганна Мюллера фон Кенигсберга (также известного как Региомонтан), которые вместе продолжали работать над теорией эпициклов Птолемея{167} и внесли в нее дополнения. Позже Коперник почерпнул много полезных сведений из краткого изложения «Альмагеста», сделанного Региомонтаном. Среди врачей-философов были Алессандро Акиллини (1463–1512) из Болоньи и Джироламо Фракасторо (1478–1553) из Вероны. Оба получили образование в Падуе в то время, когда там царило засилье аристотелевских идей.
Фракасторо своеобразно объяснял причины конфликта:
«Вы хорошо знаете, что те, чьей профессией является астрономия, всегда испытывали трудности в связи с описанием движения планет. Из-за этого существует два способа их расчета: первый, с использованием всех этих сфер, называется концентрическим, другой – с помощью так называемых эксцентрических сфер [эпициклов]. У каждого из этих методов есть свои опасности и камни преткновения. Те, кто использует гомоцентрические сферы, никогда не способны дать объяснение явлений. Те, кто использует гомоцентрические сферы, могут более адекватно объяснить явление, это правда, но их концепция этих божественных тел ошибочна, можно сказать, что почти нечестивая, ибо они приписывают небесным телам такие формы и расположения, которые не подходят для Неба. Мы знаем, что среди древних с такими трудностями много раз сталкивались Евдокс и Калипп. Гиппарх был среди первых, кто предпочел принять эксцентрические сферы вместо того, чтобы искать лучшее объяснение явления. Птолемей последовал за ним, и вскоре почти все астрономы были побеждены Птолемеем. Но протесты продолжались. Что я имею в виду? Философию? Нет, природа и небесные тела сами неустанно протестуют. До сих пор так и не нашелся философ, который бы позволил этим ужасным сферам существовать среди божественных совершенных тел»{168}.
Справедливости ради следует отметить, что наблюдения не всегда соответствовали только теории Птолемея и не подтверждали Аристотеля. Одной из ошибок системы гомоцентрических сфер Аристотеля, которая, как мы уже говорили, была обнаружена примерно в 200 г. Сосигеном, было расположение всех планет на одинаковом расстоянии от Земли. Это противоречило тому факту, что яркость планет то возрастает, то уменьшается, когда они якобы совершают свой оборот вокруг Земли. Но теория Птолемея, кажется, зашла слишком далеко. Например, в соответствии с ней максимальное расстояние от Земли до Венеры в 6,5 раз больше минимального расстояния между ними. Следовательно, если Венера светит своим собственным светом, то, поскольку видимая яркость обратно пропорциональна квадрату расстояния, для Венеры она должна составить величину, в 6,5² = 42 раза превышающую ее минимальную яркость, чего, разумеется, на самом деле нет. На основании этого в Венском университете теорию Птолемея критиковал Генрих Гессенский (1325–1397). Решение проблемы заключается, конечно же, в том, что планеты не светят своим собственным светом, а отражают свет Солнца, поэтому их видимая яркость зависит не только от расстояния до Земли, но, как и яркость Луны, от их фазы. Когда Венера дальше всего от Земли, она находится по другую сторону от Солнца по отношению к Земле, поэтому ее диск полностью освещен. Когда же Венера ближе всего к Земле, она оказывается между Землей и Солнцем и мы видим ее темную сторону. Вследствие этого для Венеры эффекты фазы и расстояния частично взаимно компенсируются, уменьшая изменения ее яркости. Никто не понимал сути этого явления, пока Галилей не открыл фазы Венеры.
Вскоре противоречия между астрономией Птолемея и Аристотеля ушли в прошлое под натиском нового, более серьезного конфликта между теми, кто вслед за Птолемеем и Аристотелем считал, что небеса вращаются вокруг неподвижной Земли, и сторонниками вновь возродившейся идеи Аристарха о том, что Земля обращается вокруг неподвижного Солнца.
Часть IV Научная революция
Ранее историки всегда принимали как должное то, что физики и астрономы были инициаторами революционных изменений в науке XVI и XVII вв., после которых физика и астрономия приняли практически современную форму, обеспечив парадигму для будущего развития остальных наук. Важность этой революции кажется самоочевидной. Тем не менее историк Герберт Баттерфилд{169} заявлял, что научная революция «затмила все события с тех пор, как началась эра христианства, и снизила значение Возрождения и Реформации всего лишь до эпизодов, каких-то внутренних смещений в средневековой христианской системе»{170}.
В этой распространенной точке зрения есть нечто, что всегда привлекало скептическое внимание позднейшего поколения историков. В последние несколько десятилетий некоторые из них выражали сомнения относительно важности и даже самого факта существования научной революции{171}. Например, Стивен Шейпин начал свою книгу с известной фразы: «Такого явления, как научная революция, не существовало, и моя книга рассказывает об этом»{172}.
Критика научной революции имеет два противоположных течения. С одной стороны, некоторые историки утверждают, что открытия XVI и XVII вв. были всего лишь естественным продолжением научного прогресса, который уже начался в Европе и/или исламском мире в Средние века. В частности, такой точки зрения придерживался Пьер Дюэм{173}. Другие историки указывают на пережитки донаучного мышления, которые продолжали существовать и после предполагаемой научной революции: например, Коперник и Кеплер местами пишут почти как Платон, Галилей составлял гороскопы, даже когда за них никто не платил, а Ньютон считал Солнечную систему и Библию двумя ключами к пониманию Бога.
И в том и в другом мнении есть доля истины. Тем не менее я убежден, что научная революция была настоящим прорывом в интеллектуальной истории человечества. Я сужу об этом с точки зрения современного ученого. За исключением нескольких очень ярких греческих ученых, вся наука до XVI в. кажется мне совершенно непохожей на то, с чем я ежедневно сталкиваюсь в своей работе или с тем, что я вижу в работах своих коллег. До научной революции наука была насыщена религией и тем, что мы сейчас называем философией; кроме того, все еще не был выработан математический аппарат. После XVII в. в физике и астрономии я чувствую себя как дома. Я узнаю многие черты науки моего времени: поиск объективных законов, выраженных математически, которые позволяют предсказывать широкий спектр явлений и подтверждены сравнением этих предсказаний с наблюдением и экспериментом. Научная революция все-таки была, и вся оставшаяся часть книги рассказывает о ней.
11. Решение вопроса о Солнечной системе
Независимо от того, была научная революция революцией или нет, но началась она с Коперника. Николай Коперник родился в 1473 г. в Польше в прусской семье, предыдущее поколение которой эмигрировало из Силезии. В возрасте десяти лет Николай потерял отца, но, к счастью, его поддерживал дядя, который разбогател, служа в церкви, и несколько лет спустя стал епископом Вармии (Эрмланд) в северо-восточной Польше. Закончив университет в Кракове, где он, возможно, прослушал курс астрономии, Коперник в 1496 г. стал студентом канонического права в университете Болоньи и начал вести астрономические наблюдения как помощник астронома Доменико Мария Наваро, который был учеником Региомонтана. В Болонье Коперник узнал, что при участии своего дяди он был утвержден в качестве одного из шестнадцати каноников кафедрального епископства во Фромборке в Вармии. С этого поста он до конца жизни получал хороший доход, исполняя весьма необременительные церковные обязанности. Коперник так и не стал священником. Изучив азы медицины в университете Падуи, в 1503 г. Коперник получил степень доктора юриспруденции в университете Феррары и вскоре вернулся в Польшу. В 1510 г. он поселился во Фромборке, построил небольшую обсерваторию и прожил в городе до самой своей смерти в 1543 г.
После своего возвращения во Фромборк Коперник анонимно написал небольшую работу, позже получившую наименование «Малый комментарий о гипотезах, относящихся к небесным движениям» (De hypothesibus motuum coelestium a se constitutis commentariolus), которую часто называют «Комментарий» или «Малый комментарий»{174}. «Комментарий» был опубликован только после смерти автора и не оказал особого влияния на развитие науки, в отличие от его дальнейших сочинений, но дает хорошее представление об идеях, которые в будущем оказывали влияние на работу Коперника.
В «Комментарии» после краткого критического обзора более ранних теорий движения планет Коперник заявляет семь принципов своей новой теории. Далее я привожу цитаты с некоторыми комментариями:
1. «Не существует одного центра для всех небесных орбит или сфер»{175}. (Среди историков есть разногласие по поводу того, считал ли Коперник эти тела заключенными в материальные сферы, как полагал Аристотель.)
2. «Центр Земли не является центром мира, но только центром тяготения и центром лунной орбиты».
3. «Все сферы движутся вокруг Солнца, расположенного как бы в середине всего, так что около Солнца находится центр мира». (Но, как мы будем говорить далее, Коперник сделал центром орбит Земли и других планет не само Солнце, а точку рядом с Солнцем.)
4. «Отношение, которое расстояние между Солнцем и Землей имеет к высоте небесной тверди, меньше отношения радиуса Земли к ее расстоянию от Солнца, так что по сравнению с высотой тверди оно будет даже неощутимым». (Вероятно, Коперник сделал это допущение, чтобы объяснить, почему мы не наблюдаем годичный параллакс – видимое годовое движение звезд, вызванное обращением Земли вокруг Солнца. Но проблема параллакса в «Комментарии» нигде не упоминается.)
5. «Все движения, замечающиеся у небесной тверди, принадлежат не ей самой, но Земле. Именно Земля с ближайшими к ней стихиями вся вращается в суточном движении вокруг неизменных своих полюсов, причем твердь и самое высшее небо остаются все время неподвижными».
6. «Все замечаемые нами у Солнца движения не свойственны ему, но принадлежат Земле и нашей сфере, вместе с которой мы вращаемся вокруг Солнца, как и всякая другая планета; таким образом, Земля имеет несколько движений».
7. «Кажущиеся прямые и попятные движения планет принадлежат не им, но Земле. Таким образом, одно это ее движение достаточно для объяснения большого числа видимых в небе неравномерностей».
В «Комментарии» Коперник не мог заявить, что его схема лучше соответствует наблюдениям, чем система Птолемея. Во-первых, это было не так. В самом деле, как это могло быть, когда по большей части Коперник строил свою теорию на информации, полученной из «Альмагеста» Птолемея, а не на своих собственных наблюдениях?{176} Вместо того чтобы заняться новыми наблюдениями, на которые он мог бы сослаться, Коперник выделил ряд эстетических преимуществ своей теории.
Одним из преимуществ было то, что движение Земли объясняло множество видимых перемещений Солнца, звезд и планет. Таким образом Коперник избавился от подгонки, предполагаемой в теории Птолемея, согласно которой центр эпициклов Меркурия и Венеры всегда должен был находиться на линии между Землей и Солнцем, а линии между Марсом, Юпитером и Сатурном и соответственно центры их эпициклов должны были всегда оставаться параллельными линии между Землей и Солнцем. Вследствие этого движение центра эпицикла каждой внутренней планеты вокруг Земли и, в свою очередь, обращение каждой внешней планеты по своему эпициклу должно было подгоняться так, чтобы завершаться точно за один год. Коперник увидел, что все эти неестественные требования просто отражают тот факт, что мы смотрим на Солнечную систему с площадки, обращающейся вокруг Солнца.
Другим эстетическим преимуществом теории Коперника должна была быть большая точность, касающаяся размеров орбит планет. Вспомним, что видимое движение планет в астрономии Птолемея зависело не от значений их эпициклов и деферентов, а только от соотношения радиусов эпицикла и деферента для каждой планеты. Если хочется, то можно взять деферент для Меркурия больше, чем деферент для Сатурна, главное – подобрать правильное значение эпицикла для Меркурия. Вслед за Птолемеем в «Планетных гипотезах» стало традиционным определять размеры орбит, опираясь на предположение, что максимальное расстояние от одной планеты до Земли равно минимальному расстоянию от Земли до следующей в порядке счета вовне планеты. Это закрепляло относительные размеры орбит для любого выбранного порядка планет, идущих от Земли, но выбор можно было делать весьма произвольно. В любом случае предположение, сделанное Птолемеем в «Планетных гипотезах», не было основано на наблюдениях и не подтверждалось ими.
Напротив, для того, чтобы согласовать схему Коперника с наблюдениями, радиус орбиты для каждой планеты должен был иметь определенное соотношение с радиусом орбиты Земли{177}.
Точнее говоря, из-за того, что Птолемей по-разному представил эпициклы для внутренних и внешних планет (не будем говорить о последующих усложнениях, связанных с эллиптической формой орбиты), отношение между радиусами эпициклов и деферентов должно равняться отношению между расстояниями от Солнца до Земли и до планеты для внутренних планет и тому же отношению, но обратному – для внешних планет (см. техническое замечание 13). Коперник представил результаты другим способом, в виде сложной «схемы триангуляции», которая создавала ложное впечатление, что он разработал новую модель для предсказаний движения небесных тел, которую подтверждали наблюдения. Однако Коперник действительно нашел правильные радиусы орбит планет. Он открыл, что по отношению к Солнцу планеты расположены в следующем порядке: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Это точно совпадает с периодами их обращения, которые Коперник оценил соответственно в три месяца, девять месяцев, год, два с половиной года, двенадцать лет и тридцать лет. Хотя еще не существовало теории, объясняющей скорость движения планет по их орбитам, должно быть, Коперник понял космическую закономерность: чем больше орбита планеты, тем медленнее она обращается вокруг Солнца{178}.
Схема Коперника является классическим примером того, как теория может быть выбрана по эстетическим критериям, без всякого экспериментального доказательства, которое могло бы дать ей преимущество перед другими теориями. В случае с теорией Коперника, изложенной в «Комментарии», достоинство ее было в том, что очень многие характерные особенности теории Птолемея объяснялись одним махом с помощью вращения Земли и ее обращения вокруг Солнца, а также теория Коперника по сравнению с теорией Птолемея правильно утверждала порядок планет и размер их орбит. Коперник признавал, что идея вращения Земли была предложена очень давно, еще пифагорейцами, но также (совершенно справедливо!) отметил, что они «необоснованно отстаивали» ее, не приводя никаких аргументов, которые он мог бы развить.
В теории Птолемея, кроме подгонки и неуверенности по поводу размеров и порядка расположения планет, было кое-что еще, что не нравилось Копернику. Согласившись с указаниями Платона о том, что планеты должны двигаться с постоянной скоростью по круговым орбитам, Коперник отказался от используемых Птолемеем понятий типа экванта, которые нужны были для объяснения реально существующих отклонений от кругового движения с постоянной скоростью. Как это уже делал аш-Шатир, Коперник увеличил количество эпициклов: шесть для Меркурия, три для Луны и по четыре для Венеры, Марса, Юпитера и Сатурна. Здесь он не добился никаких улучшений по сравнению с «Альмагестом».
Эта работа Коперника является иллюстрацией того, что неоднократно повторялось в истории физики, когда простая и красивая теория, которая достаточно хорошо согласуется с наблюдением, оказывается ближе к истине, чем теория, которая лучше нее согласуется с наблюдением, но ужасно сложна. Самую простую версию идей Коперника в общем можно свести к тому, что все планеты, в том числе и Земля, обращаются по круговым орбитам с постоянной скоростью вокруг Солнца, которое находится точно в центре этих орбит, и нигде нет никаких эпициклов. Эта теория согласуется с простейшей версией астрономической теории Птолемея, в которой для каждой планеты существует только один эпицикл, у Солнца и Луны эпициклов нет, а также нет никаких эксцентров и эквантов. Эти теории не очень точно согласуются с наблюдением, поскольку планеты обращаются не по круговым орбитам, а по почти круглым эллиптическим, их скорость только приблизительно постоянная, а Солнце находится не в центре их орбит, а в точке, которая слегка смещена от центра и называется фокусом (см. техническое замечание 18). Коперник мог бы пойти еще дальше, введя по примеру Птолемея эксцентр и эквант для орбиты каждой планеты, включая Землю. Тогда отличие наблюдений от теоретических предсказаний стало бы столь мало, что не могло быть измерено астрономами того времени.
В развитии квантовой механики есть эпизод, который показывает, что не надо слишком заострять внимание на небольших расхождениях с наблюдениями. В 1925 г. Эрвин Шрёдингер разработал метод расчета энергий состояний простейшего атома – водорода. Его результаты хорошо согласовывались с общей картиной этих энергий, но в тонких деталях, где он стремился учесть расхождения между Специальной теорией относительности и классической механикой Ньютона, они не совпадали с точными результатами измерений. Шрёдингер некоторое время скрывал свои результаты, но потом мудро рассудил, что получить грубую схему уровней энергии – это уже значительное достижение, вполне достойное публикации, а точный учет релятивистских эффектов может подождать (его сделал несколько лет спустя Поль Дирак).