Это и есть платоновы тела.
3. Гармония
Пифагорейцы открыли, что две струны щипкового музыкального инструмента одной и той же толщины, сделанные из одинакового материала и одинаково сильно натянутые, когда их щипают одновременно, производят приятный слуху звук, если отношение длин двух таких струн выражается как дробь с небольшим целым числителем и знаменателем – например, 1/2, 2/3, 1/4, 3/4 и т. д. Чтобы понять, почему так происходит, сперва нам нужно выяснить, как связаны друг с другом частота, длина и скорость распространения для любого вида волн.
Любая волна – это процесс распространения колебаний. В случае акустической (звуковой) волны в воздухе распространяются колебания давления воздуха, в случае волны на поверхности моря распространяются колебания толщины воды, в случае световой волны определенной поляризации колеблется вектор напряженности электрического поля, а в случае волны, бегущей вдоль струны, распространяются колебания частиц струны, отклоняющихся от положения равновесия в направлении, перпендикулярном самой струне. Максимальное абсолютное отклонение колеблющейся величины от равновесного значения называется амплитудой волны.
Самая простая волна имеет синусоидальную форму. Если мы сделаем мгновенный снимок такой волны, то увидим, что у нее отклонение колеблющейся величины от среднего значения обращается в ноль в некоторых точках на пути ее распространения. Если, начав с одной из них, мы будем двигаться от нее вперед в направлении распространения волны, то увидим, как отклонение от среднего плавно увеличивается, пока не сравняется с амплитудой волны, и затем плавно опускается до нуля. Если мы последуем дальше, то увидим, что отклонение падает до отрицательного значения амплитуды и вновь возвращается к нулю, а затем весь цикл повторяется снова и снова по мере того, как мы двигаемся дальше в прежнем направлении. Расстояние между двумя соседними точками в начале и в конце полного цикла называется длиной волны и обычно обозначается символом λ (лямбда). Для восприятия дальнейшего объяснения важно понять, что, поскольку мгновенный уровень возвращается к нулю не только в начале и конце цикла, но еще и в середине, расстояние между двумя соседними нулевыми точками равняется половине длины волны, λ/2. Это значит, что любые две мгновенные точки с нулевым уровнем волны должны быть отделены друг от друга целым количеством отрезков с длиной, равной половине длины волны.
В математике есть фундаментальная теорема (впервые сформулированная только в первой половине XIX в.), которая доказывает, что практически любое возмущение (точнее, любое возмущение, достаточно гладко изменяющееся вдоль линии распространения волны) можно представить как результат сложения синусоидальных волн с разными длинами (это называется гармоническим анализом, или «фурье-анализом»).
Каждая синусоидальная волна предполагает не только изменение некой величины в пространстве, но и ее колебания. Если волна распространяется со скоростью v, то за время t она проходит расстояние vt. Тогда мимо фиксированной точки за время t проследует vt/λ интервалов, равных длине волны. Это значит, что в любой точке за одну секунду количество циклов, в течение каждого из которых и сама колеблющаяся величина, и скорость ее изменения вновь возвращаются к исходным значениям, равно v/λ. Эта величина называется частотой колебаний, и ее принято обозначать греческой буквой ν (ню), то есть ν = v/λ. Скорость распространения возмущения колеблющейся струны равна постоянной величине, если масса и натяжение струны практически не зависит от длины волны, и амплитуда колебаний определяется только массой струны и силой ее натяжения. Поэтому для таких волн (так же как и для световых волн) частота просто обратно пропорциональна длине волны.
Теперь рассмотрим струну какого-нибудь музыкального инструмента. Пусть ее длина равна L. Амплитуда колебаний должна равняться нулю на обоих концах струны, в точках ее крепления. Это условие ограничивает возможные длины волн синусоидальных составляющих, на которые раскладывается любое частное колебания струны. Как мы отметили, расстояние между любыми точками синусоидальной волны, где амплитуда колебания равна нулю, должно быть кратно половине длины волны. Значит, зафиксированная на обоих концах струна должна содержать целое число N таких интервалов в половину длины волны, то есть L = Nλ/2. Это означает, что в струне возможны только волны, длины которых выражаются формулой λ = 2L/N, где N = 1, 2, 3, и т. д. Соответственно, все возможные частоты можно найти по формуле[28]:
Самая низкая частота для случая, когда N = 1, равна v/2L. Все прочие частоты, соответствующие N = 2, 3, 4 и т. д., называются обертонами. Например, самая низкая частота для струны ноты до первой октавы («среднее до») – 261,63 колебаний в секунду, но еще она же вибрирует с частотой 523,26 колебаний в секунду, 784,89 колебаний в секунду и т. д. Интенсивность различных обертонов определяет качество звучания разных музыкальных инструментов.
Теперь допустим, что вибрировать заставили две струны с длинами L1 и L2, которые в остальном абсолютно одинаковы – в частности, скорость v распространения возмущения в обеих одинакова. За время t форма колебаний первой и второй струн на самых низких частотах для обеих пройдет через n1 = ν1t = vt/2L1 и n2 = ν2t = vt/2L2 циклов или частичных циклов, соответственно. Их соотношение равняется:
Таким образом, для того, чтобы частоты самого низкого из возможных для каждой из струн звуков относились как целые числа, величина L2/L1 должна выражаться простой целочисленной дробью, то есть рациональным числом (в этом случае и для каждого обертона частоты будут удовлетворять тому же условию). Звуки обеих струн в этом случае сольются, как если бы щипнули одну струну, а не две. По всей видимости, именно поэтому мы воспринимаем получившееся созвучие как консонанс.
Например, если L2/L1 = 1/2, то на каждое колебание первой струны придется два полных цикла второй. В этом случае говорят, что звуки, издаваемые первой и второй струнами, образуют интервал октаву. Все клавиши ноты до на клавиатуре фортепиано производят музыкальные звуки, каждый из которых отделен от соседнего интервалом в одну октаву. Если отношение L2/L1 = 2/3, то получающийся интервал называется квинтой. Например, это справедливо в случае, когда первая струна звучит на ноте до первой октавы с главной частотой 261,63 колебаний в секунду, а вторая струна, длина которой 2/3 от первой, звучит на ноте соль первой октавы с частотой 3/2 × 261,63 = 392,45 колебаний в секунду[29]. Если соотношение L2/L1 = 3/4, получившийся интервал называется терцией.
Другая причина того, что эти сочетания нот благозвучны, заключается в обертонах. Чтобы N1-й обертон струны 1 имел ровно ту же частоту, что и N2-й обертон струны 2, должно выполняться равенство vN1/2L1 = vN2/2L2, и таким образом:
И вновь отношение длин двух струн выражается рациональным числом, хотя и по иной причине. Но если это отношение окажется равно какому-либо нерациональному числу, например, π или квадратному корню из 2, то обертоны двух струн никогда не совпадут точно, хотя частоты более высоких обертонов могут сходиться как угодно близко. Звук, который при этом получается, ужасен.
4. Теорема Пифагора
Так называемая теорема Пифагора – самая знаменитая во всей планиметрии. Хотя ее доказательство приписывают ученикам и последователям Пифагора, например, Архиту Тарентскому, в точности история ее создания неизвестна. Здесь я приведу простейшее доказательство, основанное на понятии пропорциональности, широко применявшемся древнегреческими математиками.
Рассмотрим треугольник с вершинами A, B и P, у которого угол при вершине P является прямым. Теорема утверждает, что площадь квадрата, сторона которого равна AB (гипотенуза треугольника), равняется сумме площадей квадратов, стороны которых равны двум другим сторонам того же треугольника, катетам AP и BP. Говоря языком современной алгебры, рассматривая AB, AP и BP как численные величины, равные длинам указанных сторон, должно быть справедливо равенство:
Чтобы доказать теорему, следует провести перпендикуляр к гипотенузе AB из вершины P. Обозначим точку его пересечения с гипотенузой C (см. рис. 2). Таким образом мы поделим исходный треугольник ABP на два меньших прямоугольных треугольника APC и BPC. Легко видеть, что оба меньших треугольника подобны исходному прямоугольному треугольнику, то есть все углы в них те же самые, что и в большом. Если мы обозначим углы при вершинах A и B α (альфа) и β (бета), то у треугольника ABP будут углы α, β и 90°, и значит, α + β + 90° = 180°. В треугольнике APC два угла равны α и 90°, значит, третий угол равняется β. Аналогично в треугольнике BPC два угла равны β и 90°, следовательно, третий угол равен α.
Так как все три треугольника взаимно подобны, их соответствующие стороны пропорциональны. Это означает, что длина катета AC относится к длине гипотенузы AP треугольника ACP так же, как длина катета AP к длине гипотенузы AB в исходном треугольнике ABP. Соответственно, BC относится к BP в той же пропорции, что и BP к AB. Мы можем выразить это в более привычной алгебраической форме, связав длины сторон пропорцией:
Отсюда очевидно следует, что AP² = AC × AB, а BP² = BC × AB. Складывая два этих уравнения вместе, получаем:
AP² + BP² = (AC + BC) × AB.Но AC + BC = AB, что и требовалось доказать.
Рис. 2. Доказательство теоремы Пифагора. Согласно теореме, сумма площадей квадратов, стороны которых равны катетам AP и BP, равняется площади квадрата, стороной которого является гипотенуза AB. Для доказательства теоремы из точки P в точку C проводится перпендикуляр к гипотенузе AB.
5. Иррациональные числа
Математикам Древней Греции были известны лишь рациональные числа. К ним относятся все целые числа, например, 1, 2, 3 и т. д. или целочисленные дроби – 1/2, 2/3 и т. п. Если отношение длин двух отрезков выражалось целочисленной дробью, древнегреческий математик считал, что они «соизмеримы». К примеру, если они находятся в отношении 3/5, это означает, что если один из этих отрезков отложить три раза, а другой пять раз, то получится два отрезка одинаковой длины. Представьте себе потрясение античных математиков, выяснивших, что не все отрезки являются соизмеримыми. Например, в прямоугольном равнобедренном треугольнике гипотенуза несоизмерима ни с одним из двух одинаковых катетов. В понятиях современной математики, поскольку, согласно теореме Пифагора квадрат гипотенузы такого треугольника равен удвоенному квадрату длины любого из катетов, длина гипотенузы равняется произведению длины любого из катетов на квадратный корень из 2. Это означает, что квадратный корень из 2 не является рациональным числом. Доказательство этого факта Евклидом в книге X «Элементов» базируется на первоначальном предположении обратного, что существует рациональное число, квадрат которого равен 2, после чего Евклид опровергает это предположение.
Допустим, что есть рациональное число, выраженное дробью p/q (где p и q – целые числа), чей квадрат равен 2:
В таком случае будет бесконечное количество таких пар чисел, которые можно получить, умножая p и q на любой натуральный множитель, но предположим, что целые числа p и q – наименьшие целые, для которых верно выражение (p/q) 2 = 2. Из уравнения выше следует, что
p² = 2q².Отсюда очевидно, что p² – четное число, но так как произведение двух любых нечетных чисел есть нечетное число, то p должно быть только четным. То есть мы можем записать равенство p = 2p', где p' – целое число. Но тогда
q² = 2p'²и, повторяя предыдущую цепь рассуждений, находим, что число q также четное и может быть выражено равенством q = 2q', где q' – целое число. Но тогда p/q = p'/q', и значит,
где p' и q' – целые числа, которые в два раза меньше p и q соответственно. А это противоречит исходному предположению, что p и q – наименьшие целые числа, для которых равенство (p/q)² = 2 справедливо. Мы имеем противоречие, и, следовательно, такие числа не могут существовать.
Теорема явным образом обобщается: любое число, например, 3, 5, 6 и т. д., которое само не является квадратом целого числа, не может быть квадратом рационального числа. Например, если 3 = (p/q)², где p и q – наименьшие целые числа, для которых это равенство справедливо, то p² = 3q², но это невозможно, если только нет такого целого p', для которого p = 3p', но тогда q² = 3p'², и q = 3q' для некоего целочисленного q', и, значит, 3 =(p'/q')², что противоречит предположению о том, что не существует целых чисел меньше p и q, для которых p2 = 3q2. Поэтому квадратные корни чисел 3, 5, 6, … иррациональны все.
Современная математика признает существование иррациональных чисел, таких как число, обозначаемое √2, квадрат которого равен 2. Если это число представить в виде десятичной дроби, то последовательность знаков такого числа продолжается до бесконечности, не повторяясь. Например, √2 = 1,414213562… И во множестве рациональных, и во множестве иррациональных чисел их количество бесконечно, но в каком-то смысле иррациональных чисел намного больше, чем рациональных, поскольку рациональные числа можно представить как бесконечную последовательность, включающую все рациональные числа:
1, 2, 1/2, 3, 1/3, 2/3, 3/2, 4, 1/4, 3/4, 4/3, …тогда как перечислить все иррациональные числа никаким способом нельзя.
6. Установившаяся скорость падения
Чтобы понять, как наблюдения за падающими телами привели Аристотеля к его теории падения тел, мы можем воспользоваться физическим принципом, Аристотелю неизвестным, – Вторым законом Ньютона. Он говорит нам, что ускорение a тела (темп возрастания его скорости) равно частному от деления полной силы F, действующей на тело, на его массу m:
На тело, падающее в воздухе, действуют две основные силы. Одна из них – сила тяготения, пропорциональная массе падающего тела:
Fт = mg.Здесь g – постоянная величина, не зависящая от того, какое именно тело падает. Оно обозначает ускорение свободного падения тела в вакууме и вблизи земной поверхности, приблизительно равное 9,8 м/с за секунду. Вторая сила – сопротивление воздуха. Она выражается функцией f (v), значение которой пропорционально плотности воздуха, увеличивается с ростом скорости и зависит от формы и размера тела, но не зависит от его массы:
Fв = −f(v) = kv.В этой формуле знак минуса для силы сопротивления воздуха подставлен, потому что мы рассматриваем ускорение, направленное вертикально вниз, а для вертикально падающего тела сила сопротивления воздуха направлена вверх. Например, для тела, падающего сквозь среду значительной вязкости, ее сопротивление пропорционально скорости тела:
f(v) = kv.В этой формуле k – положительная константа, которая зависит от размера и формы тела. В то же время, если мы рассмотрим, например, метеороид или ракету, входящую в разреженные верхние слои атмосферы, то будет работать другая формула:
f(v) = Kv²,где K – другая положительная константа.