Впервые перепелиные яйца попали на орбиту в 1979 году на борту биоспутника «Космос-1129» в установке «Инкубатор-1». Ученые хотели установить, смогут ли в условиях невесомости развиваться эмбрионы птенцов. Выяснилось, что развитие эмбрионов шло не хуже, чем на Земле. Опыт учли при создании новой установки «Инкубатор-2» для экспериментов на станции «Мир». Первым живым существом, родившимся в космосе, стал перепеленок, пробивший скорлупу 22 марта 1990 года. За ним появился второй, третий. Однако перепелята не смогли адаптироваться к условиям невесомости. Они хаотично летали внутри отсека. Из-за невозможности фиксировать тело в пространстве птенцы не смогли самостоятельно кормиться и вскоре погибли.
В 1992 году на орбиту было отправлено 40 яиц и специальные мешки-фиксаторы для имитации гравитационного воздействия. Тогда вывелось шесть птенцов, которые затем были доставлены на Землю, став ценным научным материалом для биологов. В 1999 году на «Мире» продолжили эксперимент, который получил название «Перепел СК-6». На этот раз планировалось изучить поведение птенцов в первые сутки жизни в условиях искусственной «гравитации», для чего использовалась специальная центрифуга, дававшая нагрузку от 0,3 до 0,8 g. Однако центрифуга сломалась, проработав всего 15 часов. По просьбе ученых, десять птенцов разместили в спускаемом аппарате и отправили на Землю. Из них выжили только трое.
Результат этих экспериментов неоднозначен. Зародыши внутри яиц развиваются нормально, однако птенцы не могут приспособиться к невесомости и погибают без специальных фиксаторов. Очевидно, и здесь требуются продолжительные исследования, которые позволят сделать окончательные выводы о приспособляемости птиц к условиям космического полета.
Наверное, многие проблемы можно было бы решить, создав на корабле искусственную «гравитацию». Первый космический корабль, на котором планировалось испытать такого рода систему, мог отправиться на орбиту еще в рамках программы «Восход». Запуск «Восхода-3» с двумя космонавтами на борту был назначен на ноябрь 1965 года – корабль в космосе должна был сопровождать третья ступень ракеты-носителя (блок И), соединенная с ним пятидесятиметровым тросом. После выхода на орбиту предполагалось развести их и раскрутить вокруг центра масс, получив искусственную силу тяжести за счет центробежной силы. К сожалению, этот очень интересный эксперимент так и не состоялся, и приоритет забрали американцы: в сентябре 1966 года они раскрутили соединенные тросом корабль «Джемини-11» и мишень «Аджена», благодаря чему удалось добиться возникновения небольшой силы тяжести в 0,00078 g. Только вот сами астронавты никаких существенных изменений при этом не заметили. Их опыт был и остается уникальным; он же продемонстрировал, что создание искусственной силы тяжести – сложная техническая задача.
Допустим все-таки, что такую задачу удалось решить. Теоретики космонавтики считают, что нет никаких противопоказаний для замены силы тяжести центробежной силой. Подсчитано, что оптимальной скоростью вращения должна быть скорость 10 град/с с радиусом вращения 90 м – в этом случае искусственная сила тяжести приобретет величину, равную 0,25—0,35 g, чего вполне достаточно для устранения вредоносного воздействия невесомости на экипаж и биосферу корабля. Однако те, кто видит «панацею» в раскрутке корабля, обычно забывают о силе Кориолиса, которая проявляет себя именно в раскрученных системах. А ее проявления весьма неприятны: брошенный предмет относит в бок, вытянутая рука сама отклоняется в сторону.
Что если адаптация к такой среде окажется еще труднее, чем адаптация к невесомости? Может ли система искусственной «гравитации» гарантировать, что космонавты в таких условиях будут точно и быстро выполнять все необходимые операции?
На эти вопросы попытались ответить ученые НАСА. В 2004 году они начали серию экспериментов, чтобы понять, как мозг адаптируется к такой странной среде. Практически сразу было отмечено, что когда перед человеком, манипулирующим различными предметами и нажимающим на всевозможные кнопки, поставлена четкая задача, мозг мобилизуется и начинает компенсировать «неправильную» плывущую обстановку. Чем больше упражнений и усилий делает человек, тем быстрее он приспосабливается к новым условиям жизни. Причем после некоторого времени, проведенного во вращающейся комнате, люди вообще переставали чувствовать силу Кориолиса. Мозг автоматически, незаметно для сознания, вводил поправки в движения тела так, что человек не чувствовал дискомфорт. И наоборот, после возвращения в нормальный мир некоторое время человеку казалось, что кто-то тянет его руки в сторону – испытуемый не мог действовать нормально, словно эффект Кориолиса появлялся для него вновь, хотя тут-то его и не было. Но стоило только испытуемому включиться в целенаправленную работу, как мозг приходил в норму, и «фантом Кориолиса» исчезал без следа.
В ходе наземных испытаний установлено, что человек хорошо приспосабливается к вращению своего жилища со скоростью до 25 оборотов в минуту – этого должно с избытком хватить для создания вращающихся орбитальных станций и кораблей с искусственной «гравитацией». То есть результат обнадеживающий, однако опять же никто не может сказать, как все это будет выглядеть в условиях реального космоса. Следовательно, раньше или позже придется провести соответствующий эксперимент.
Имеются и другие опасные космические факторы, влияние которых на человека, животных и растения изучены крайне слабо. Ранее мы уже касались темы воздействия космических частиц. На Земле и низких околоземных орбитах мы защищены от этого воздействия незримым толстым «щитом» магнитных полей, задерживающих космические частицы в радиационных поясах. В межпланетном пространстве от потока частиц космонавта защищает только тонкая стенка корабля.
Чтобы разобраться, какие дозы радиации опасны, воспользуемся устаревшей, но весьма наглядной единицей измерения – биологическим эквивалентом рентгена (бэр, rem). Один бэр соответствует такому облучению живого организма, при котором наблюдается тот же биологический эффект, что и при получении дозы гамма-излучения в один рентген. Для работников атомных электростанций, которые постоянно работают с источниками ионизирующих излучений, медицинскими нормативами установлен предел в 30 бэр в год, что на два порядка выше естественного фона у поверхности Земли. Для советских космонавтов был установлен норматив 150 бэр в год, причем однократная доза «оправданного риска», которую космонавт мог получить, например, при выходе в открытый космос в условиях солнечной вспышки, не должна превышать 50 бэр (к развитию лучевой болезни гарантировано приводит однократная доза в 100 бэр). Сегодня установлены более жесткие нормативы: для российских космонавтов – 66 бэр в год, для американских астронавтов – 50 бэр в год. В реальности космонавты, работающие на МКС, «набирают» от 0,1 до 0,8 бэр в сутки, что с учетом неравномерности получаемых доз считается приемлемым. Во время рекордной по интенсивности вспышки на Солнце, которая произошла 20 января 2005 года, экипаж МКС «поймал» по одному бэру, что примерно соответствует облучению во время посещения рентгеновского кабинета.
Но это на орбитальной станции, которая имеет неплохую защиту и прикрыта магнитным полем Земли. Что будет с дозой и космонавтами в дальнем космосе, если произойдет сравнимая по мощности вспышка? Точно не может сказать никто.
Считается, что если бы в момент этой вспышки космонавт находился на Луне, то он получил бы довольно серьезную дозу: 35 бэр внутри корабля и 400 бэр в скафандре на поверхности – последняя названная доза, как видите, почти неизбежно привела бы к лучевой болезни со смертельным исходом.
Впрочем, даже без вспышек экипаж межпланетного корабля будет подвергаться воздействию солнечных и галактических лучей. Чтобы определить степень угрозы для марсианской экспедиции, на «Кьюриосити» был установлен специальный прибор RAD (Radiation Assessment Detector), который фиксировал интенсивность радиации на протяжении всего перелета к красной планете и после высадки на ее поверхность (удивительно, но такое важнейшее для дальнейшего развития пилотируемой космонавтики исследование проводилось впервые!) Результаты внушают надежду: на трассе перелета Земля – Марс среднесуточная доза радиации составила 0,18 бэр, причем вклад галактических лучей достигал 97 %. Исходя из этого специалисты рассчитали эквивалентную дозу для реалистичного с использованием современной техники полета человека к Марсу и обратно продолжительностью в один год. Она оказалась 66 ± 12 бэр, что выше норматива американских астронавтов, но соответствует нормативу российских космонавтов. Получается, что если в течение экспедиции не случится каких-нибудь особо интенсивных вспышек на Солнце, то радиационное воздействие не может считаться серьезным препятствием для осуществления межпланетного рейса.
Однако следует помнить, что радиация оказывает вредоносное воздействие не только на людей, но и на животных, и на растения. Скажем, биологи установили, что наиболее подходящими растениями для космической оранжереи являются картофель, фасоль, свекла и салат, – но эти же растения оказались наименее устойчивы к ионизирующей радиации.
Еще меньше, чем о воздействии радиации, известно о том, как повлияет на наши организмы длительное нахождение вне геомагнитного поля (гипомагнитная среда). На Земле все организмы находятся в магнитном поле, мы появились и эволюционировали в нем. Наши жизненные ритмы напрямую связаны с его естественными колебаниями и наложенными на них переменными магнитными полями, обусловленными изменениями в ионосфере и магнитосфере. Величина магнитного поля в межпланетном пространстве и на Марсе будет соответственно в 100 тысяч и 10 тысяч раз меньше, чем на Земле. Уже имеются данные о неблагоприятном влиянии пониженного магнитного поля на жизнедеятельность человека. В частности, выявлены неблагоприятные функциональные сдвиги в нервной, сердечно-сосудистой и иммунной системах. Очевидно, придется спроектировать, построить и испытать некую систему, которая создавала бы на межпланетном корабле магнитное поле, близкое по напряженности полю Земли, одновременно защищая экипаж от космического излучения. Однако эта задача с точки зрения технического воплощения будет посложнее искусственной «гравитации». Расчеты показывают, что для эффективной электромагнитной защиты корабля объемом 100 м3 понадобится соленоид диаметром четыре метра и длиной два метра, причем его потребляемая мощность составит 2 000 мегаватт! Где взять такую бездну энергии, если перспективный реактор Исследовательского центра имени М. В. Келдыша, о котором мы говорили выше, будет давать всего лишь один мегаватт? Похоже, все-таки придется обойтись классической защитой – толстыми стенками корабля, которые хоть и утяжелят его, но не будут требовать огромной энергии. Что касается биологической «зависимости» от магнитного поля, то этот вопрос требует изучения – на Земле и в космосе.
Как видите, существуют проблемы и задачи, которые необходимо решить еще до того, как начнется подготовка к пилотируемой экспедиции на Марс. Нет уверенности, что мы все знаем о коварстве невесомости и научились компенсировать ее вредоносное воздействие. Нет надежной автономной биосферы, не определен ее элементарный состав. Нет проверенной в деле защиты от космических лучей и солнечных вспышек. Нет данных о влиянии природного магнитного поля. Вопросов очень много. И лететь на Марс, не получив твердый ответ на каждый из них, будет форменным самоубийством.
Кроме того, есть еще одна важная проблема, о которой очень не любят распространяться космонавты, но которая может стать ключевой, повлияв на весь ход межпланетной экспедиции. Имя этой проблемы – психология.
4.4. «Бочконавты» на пути к Марсу
Психологические трудности космонавтов – тайна за семью печатями. В глазах посторонних космонавт должен быть идеальным членом общества: консервативен (никаких татуировок, хвостиков и серег в ухе), морально устойчив (никаких адюльтеров и пьяных драк), абсолютно законопослушен (никаких «приводов» в полицию, судебных разбирательств и прочих контактов с правоохранительными органами), достаточно дружелюбен (никаких ссор с коллегами, начальством или журналистами). Кроме того, он должен быть обаятельным, трудолюбивым, скромным, физически подтянутым и многосторонне развитым. Вылитый супермен! Но даже если космонавт будет полностью соответствовать всем перечисленным критериям, никто не может гарантировать, что ему «не сорвет крышу» в экстремальной ситуации на орбите или межпланетной траектории. Поэтому психологи проводят многочисленные тесты, чтобы «отбраковать» людей с неустойчивой психикой. И понятно, почему результаты «отбраковки» засекречены, – а вы хотели бы, чтобы о ваших скрытых недостатках узнал весь мир?
И все же, несмотря на предельно жесткий отбор и специальные тренировки, у космонавтов тоже случаются срывы. О них тоже рассказывать не принято, но каждый такой случай должен быть изучен профессионалами, чтобы предотвратить похожие инциденты. Наверное, первый срыв при работе в космосе случился с Валентиной Терешковой во время ее единственного полета на «Востоке-6» в июне 1963 года. Она очень тяжело переносила космический рейс и с какого-то момента просто перестала реагировать на происходящее: на вопросы о самочувствии отвечала уклончиво, не выполнила программу бортовых экспериментов, а под конец не смогла вручную сориентировать корабль – для нее пришлось разрабатывать пошаговую инструкцию. После этого полета был сделан ошибочный вывод, будто бы всему виной особенности женского организма, – и на долгое время женщины были отстранены от космоса.
Когда начались групповые полеты, проявилась проблема «психологической совместимости». К сожалению, до сих пор не создано ее внятной теории, поэтому ученые двигаются на ощупь, в опоре на чистую эмпирику. Недостаток такого метода в том, что мы лишь с большой натяжкой можем экстраполировать результаты на другие ситуации и другие коллективы. Дело осложняется тем, что космонавты – это еще и амбициозные активные люди с задатками лидеров, высоким самоуважением и большой мотивацией, иначе они просто не стали бы космонавтами. Но даже простейшие эксперименты показывают, что внутри группы лидеров мгновенно возникают конкурирующие потребности, что ведет к росту межличностной враждебности и жестоким конфликтам.
Первые полеты экипажей были кратковременными, и число членов экспедиции не превышало двух-трех человек. Психологи отмечали, что в таких условиях на сплоченность экипажа действуют всего два фактора: общая заинтересованность в результате и высокая загруженность на грани мобилизации. Но и тогда не все было гладко. Скажем, в первой экспедиции на станцию «Салют-1» участвовал экипаж дублеров (Георгий Добровольский, Владислав Волков, Виктор Пацаев), который, видимо, был менее психологически подготовлен к работе в изолированном пространстве, чем основной. Поэтому работа шла трудно, вспыхивали конфликты. Коллектив сплотился только после того, как произошел пожар, и от правильных действий каждого зависело выживание станции. Пример с обратным результатом – полет экипажа Бориса Волынова и Виталия Жолобова на «Салюте-5». После серьезной аварии космонавтам пришлось восстанавливать жизнеспособность станции, но эта экстремальная работа привела к тому, что Жолобов испытал стресс, невыносимый для его психики, после чего «ушел в себя» и отказался участвовать в программе экспериментов. В результате полет был прерван раньше намеченного срока.
«Марс-500» – жизнь в изоляции
Как видите, предсказать реакции даже проверенных и подготовленных людей очень трудно. Все же в ходе наблюдений за работниками полярных станций и космонавтами в тренажерных комплексах был сделан осторожный вывод, что оптимальная численность экипажа для дальнего полета – шесть человек. Почему это так? Дело в том, что внутри замкнутого коллектива действует система «зависимостей» и «привязанностей».
Установлено, что экипаж из пяти человек без особого напряжения может обслуживать межпланетный корабль, но система межличностных отношений в таком коллективе быстро оскудевает, а вот шестой член экипажа добавляет огромное количество вариантов – модель сразу усложняется на порядок! Такое искусственное усложнение необходимо, ведь когда полет превращается в рутину, снижается мотивация его участников, что приводит к уменьшению взаимного стимулирования, что в свою очередь приводит к отчуждению между членами экипажа, что в свою очередь приводит к дальнейшему снижению мотивации, что в свою очередь приводит… В общем, пока друг другу горло не перегрызут, не остановятся. Оказывается, введение шестого члена экипажа если и не предотвратит, то замедлит подобное развитие событий.
Психологи заметили еще один интересный феномен. Когда люди оказываются в изолированном пространстве и начинают выполнять общую работу, они довольно быстро начинают обмениваться личной информацией, доходя до интимных подробностей. С одной стороны, это благо, ведь происходит процесс «притирки», с другой стороны, это вред: «обнажение» всегда вызывает стресс, даже если человек его не чувствует, а стресс выливается в негативные реакции, что чревато отчуждением и «выходом из игры». Посему психологи предлагают компоновать экипажи задолго до полета и требовать, чтобы будущие космонавты проводили больше времени вместе – тогда личная информация будет исчерпана еще на Земле, и «притирка» через «обнажение» завершится без отягчающих последствий. Кроме того, рекомендуется устраивать членам будущего экипажа регулярный опрос с просьбой дать оценку деятельности и качеств друг друга – это помогает выявить личные симпатии, которые всегда способствуют сплоченности группы.