Пример:?1 + ?2 + ?3 + ?4 + ?5 = 180°?(5–2) = 540°.
Теорема о внешнем угле треугольника.
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним (рис. 70):
? = ? + ?.
Рис. 70.
Теорема о величине вписанного в окружность угла.
Угол, вписанный в окружность, равен половине соответствующего q центрального угла (рис. 71):
Рис. 71.
3. Основные теоремы о треугольникеПризнаки равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис. 72).
Рис. 72.
?ABC = ?A1B1C1 т. к. АB = А1В1, АС = А1С1 и ?A = ?A1.
Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 73).
Рис. 73.
?ABC = ?A1B1C1 т. к. АC = А1C1, ?A = ?A1, ?C = ?C1.
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны (рис. 74).
Рис. 74.
?ABC = ?A1B1C1 т. к. АB = А1B1, АC = А1C1, BC = B1C1.
Признаки равенства прямоугольных треугольников.
Если гипотенуза и катет одного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие треугольники равны (рис. 75).
Рис. 75.
?ABC = ?A1B1C1 т. к. ?А = ?А1 = 90°; BC = B1C1; AB = A1B1.
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны (рис. 76).
Рис. 76.
?АВС = ?А1В1С1, т. к. АВ = А1В1, ?А = ?A1 a ?С = ?С1 = 90°.
Свойство медианы равнобедренного треугольника.
В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой (рис. 77).
Рис. 77.
(АВ = ВС, АМ = МС) ? (?АВМ = ?МВС, ?АМВ = ?ВМС = 90°).
Свойство средней линии треугольника.
Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна её половине (рис. 78).
Рис. 78.
EF||AC, EF = 1/2АС, т. к. АЕ = ЕВ и BF = FC.
Теорема синусов.
Стороны треугольника пропорциональны синусам противолежащих углов (рис. 79).
Рис. 79.
Теорема косинусов.
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними (рис. 80).
Рис. 80.
а2= b2+ с2– 2bc cos ?.
Теорема Пифагора (частный случай теоремы косинусов).
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (рис. 81).
Рис. 81.
с2= а2+ b2.
4. Пропорциональность и подобие на плоскостиТеорема Фалеса.
Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне (рис. 82).
Рис. 82.
(АВ = BC, AA1||BB1||CC1) ? A1B1 = В1С1, q и р – лучи, образующие угол ?.
а, b, с – прямые, пересекающие стороны угла.
Теорема о пропорциональных отрезках (обобщение теоремы Фалеса).
Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки (рис. 83).
Рис. 83.
или
Свойство биссектрисы треугольника.
Биссектриса угла треугольника делит противолежащую ему сторону на отрезки, пропорциональные двум другим сторонам (рис. 84).
Рис. 84.
Если ? = ?, то
или
Признаки подобия треугольников.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны (рис. 85).
Рис. 85.
Треугольники ABC и A1B1C1 – подобные, т. к. ? = ?1 и ? = ?1.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то треугольники подобны (рис. 86).
Рис. 86.
Треугольники ABC и A1B1C1 – подобны, т. к.
и ? = ?1.
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны (рис. 87).
Рис. 87.
Треугольники ABC и A1B1C1 – подобны, т. к
5. Основные геометрические неравенстваСоотношение длин наклонной и перпендикуляра.
Если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше (рис. 88):
АА' < АВ < АС; если А'С > А'В, то АС > АВ.
Рис. 88.
Неравенство треугольника.
Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей точки. Отсюда следует, что в любом треугольнике каждая сторона меньше суммы двух других сторон (рис. 89):
АС < АВ + ВС.
Рис. 89.
Связь между величинами сторон и величинами углов в треугольнике.
В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол (рис. 90).
(BC < AB < AC) ? (?А < ?С < ?В).
Рис. 90.
6. Основные геометрические места точек на плоскостиГеометрическим местом точек плоскости, равноудалённых от сторон угла, будет биссектриса данного угла (рис. 91).
Рис. 91.
АК = AT, где А – любая точка на биссектрисе.
Геометрическим местом точек, равноудалённых от двух данных точек, будет прямая, перпендикулярная к отрезку, соединяющему эти точки, и проходящая через его середину (рис. 92).
Рис. 92.
MA = MB, где М – произвольная точка на серединном перпендикуляре отрезка АВ.
Геометрическим местом точек плоскости, равноудалённых от заданной точки, будет окружность с центром в этой точке (рис. 93).
Рис. 93.
Точка О равноудалена от точек окружности.
Местоположение центра окружности, описанной около треугольника.
Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон (рис. 94).
Рис. 94.
А, В, С – вершины треугольника, лежащие на окружности.
АМ = МВ и АК = КС.
Точки М и К – основания перпендикуляров к сторонам АВ и АС соответственно.
Местоположение центра окружности, вписанной в треугольник.
Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис (рис. 95).
Рис. 95.
В ?ABC отрезки AT и СК являются биссектрисами.
7. Теоремы о четырёхугольникахСвойства параллелограмма.
У параллелограмма противолежащие стороны равны. У параллелограмма противолежащие углы равны.
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам (рис. 96).
Рис. 96.
АВ = CD, ВС = AD, ?BAD = ?BCD, ?АВС = ?ADC, AO = OC, BO = OD.
Признаки параллелограмма.
Если у четырёхугольника две стороны параллельны и равны, то он является параллелограммом (рис. 97).
Рис. 97.
ВС||AD, ВС = AD ? ABCD – параллелограмм.
Если диагонали четырёхугольника пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм (рис. 98).
Рис. 98.
АО = ОС, ВО = OD ? ABCD – параллелограмм.
Свойства прямоугольника.
Для прямоугольника характерны все свойства параллелограмма (у прямоугольника противолежащие стороны равны; у прямоугольника противолежащие углы равны (90°); диагонали прямоугольника пересекаются и точкой пересечения делятся пополам).
Диагонали прямоугольника равны (рис. 99):
АС = BD.
Рис. 99.
Признак прямоугольника.
Если у параллелограмма все углы равны, то он является прямоугольником.
Свойства ромба.
Для ромба характерны все свойства параллелограмма (у ромба противолежащие стороны равны – вообще все стороны по определению равны; у ромба противолежащие углы равны; диагонали ромба пересекаются и точкой пересечения делятся пополам).
Диагонали ромба пересекаются под прямым углом.
Диагонали ромба являются биссектрисами его углов (рис. 100).
Рис. 100.
AC ? BD, ?ABD = ?DВС = ?CDB = ?BDA, ?ВАС = ?CAD = ?ВСА = ?DCA.
Признак ромба.
Если у параллелограмма диагонали перпендикулярны, то он является ромбом.
Свойства квадрата.
Квадрат обладает свойствами прямоугольника и ромба.
Признак квадрата.
Если диагонали прямоугольника пересекаются под прямым углом, то он – квадрат.
Свойство средней линии трапеции.
Средняя линия трапеции параллельна основаниям и равна их полусумме (рис. 101).
Рис. 101.
Критерии вписанного и описанного четырехугольников.
Если около четырёхугольника можно описать окружность, то суммы его противоположных углов равны по 180° (рис. 102).
?А + ?С = ?В + ?D = 180°.
Рис. 102.
Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны (рис. 103).
AB + CD = AD + BC.
Рис. 103.
8. Теоремы об окружностяхСвойство хорд и секущих.
Если хорды АВ и CD окружности пересекаются в точке S, то AS ? BS = CS ? DS (рис. 104).
Рис. 104.
Если из точки S к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS (рис. 105).
Рис. 105.
Число ?.
Отношение длины окружности к её диаметру не зависит от радиуса окружности, то есть оно одно и то же для любых двух окружностей. Это число равно ? (рис. 106).
Рис. 106.
9. ВекторыТеорема о разложении вектора по базису.
Если на плоскости даны два неколлинеарных вектора а и b и любой другой вектор с, то существуют единственные числа n и m, такие, что с = nа + mb (рис. 107).
где
Рис. 107.
Теорема о скалярном произведении векторов.
Скалярное произведение векторов равно произведению их абсолютных q величин (длин) на косинус угла между ними (рис. 108).
ОА ? ОВ = ОА ? OB ? cos ?.
Рис. 108.
Основные формулы планиметрииДля треугольника (рис. 109):
Рис. 109.
где a, b, с – стороны треугольника;
?, ?, ? – противолежащие им углы;
r и R – радиусы вписанной и описанной окружностей;
ha, ma, la – высота, медиана и биссектриса, проведённые к стороне а;
S – площадь треугольника;
– полупериметр треугольника.
Медианы в треугольнике делятся точкой пересечения в отношении 2:1, считая от вершины (рис. 110).
Рис. 110.
Для четырёхугольников:
где а, b – длины оснований;
h – высота трапеции.
Площадь параллелограмма со сторонами а, b и углом ? между ними вычисляется по формуле S = ab sin ?. Можно также воспользоваться формулой:
где d1, d2– длины диагоналей, ? – угол между ними (или S = aha, где ha – высота).
Для произвольного выпуклого четырёхугольника (рис. 111):
Рис. 111.
Для правильного n-угольника:
(R и r – радиусы описанной и вписанной окружностей, аn – длина стороны правильного n-угольника).
Для окружности и круга (рис. 112):
Рис. 112.
и 1\2R2?, если ? выражен в радианах.
Sсегмента = Sсектора – Sтреугольника.
Формулы аналитической планиметрииЕсли даны точки A(x1; y1) и В(х2; у2), то
Уравнение прямой АВ:
легко приводится к виду ах + by + с = 0, где вектор n = (а, b) перпендикулярен прямой.
Расстояние от точки А(х1; у1) до прямой ах + by + с = 0 равно
Расстояние между параллельными прямыми ах + by + с1 = 0 и ах + by + с2 = 0 равно
Угол между прямыми а1х + BLу + с1 = 0 и а2х + b2y + с2 = 0 вычисляется по формуле:
Уравнение окружности с центром в точке O(x0, y0) и радиусом R:(x – xo)2+ (y – yo)2= R2.
3.2. Вопросы для самопроверки
1. а) Какое вы знаете свойство вертикальных углов? (1)
б) Докажите это свойство. (1)
2. а) Сформулируйте признак равенства треугольников по двум сторонам и углу между ними. (1)
б) Докажите данный признак. (1)
3. а) Сформулируйте признак равенства треугольников по стороне и двум углам. (1)
б) Докажите данный признак. (1)
4. а) Перечислите основные свойства равнобедренного треугольника. (1)
б) Докажите эти свойства. (1)
в) Докажите признак равнобедренного треугольника. (1)
5. а) Сформулируйте признак равенства треугольников по трём сторонам. (1)
б) Докажите данный признак. (1)
6. Докажите, что две прямые, параллельные третьей, параллельны. (2)
7. а) Сформулируйте признаки параллельности прямых. (1)
б) Докажите эти признаки. (1)
в) Докажите обратные теоремы. (1)
8. Докажите теорему о сумме углов треугольника. (1)
9. Докажите, что внешний угол треугольника равен сумме двух внутренних, не смежных с ним. (1)
10. а) Сформулируйте признаки равенства прямоугольных треугольников. (1)
б) Докажите признаки равенства прямоугольных треугольников по гипотенузе и катету; по гипотенузе и острому углу. (1)
11. а) Докажите, что из точки, не лежащей на данной прямой, можно опустить на эту прямую единственный перпендикуляр. (1)
б) Докажите, что через точку, лежащую на данной прямой, можно провести единственную прямую, перпендикулярную данной. (1)
12. а) Где лежит центр описанной около треугольника окружности? (1)
б) Докажите соответствующую теорему. (1)
13. а) Где лежит центр вписанной в треугольник окружности? (1)
б) Докажите соответствующую теорему. (1)
14. Докажите свойство касательной к окружности. (1)
15. а) Какие вы знаете свойства параллелограмма? (1)
б) Докажите эти свойства. (1)
16. а) Какие вы знаете признаки параллелограмма? (1)
б) Докажите эти признаки. (1)
17. а) Какие вы знаете свойства и признаки прямоугольника? (1)
б) Докажите эти свойства и признаки. (1)
18. а) Какие вы знаете свойства и признаки ромба? (1)
б) Докажите эти свойства и признаки. (1)
19. а) Какие вы знаете свойства и признаки квадрата? (1)
б) Докажите эти свойства и признаки. (1)
20. а) Сформулируйте теорему Фалеса. (1)
б) Докажите эту теорему. (1)
21. а) Сформулируйте обобщенную теорему Фалеса (теорему о пропорциональных отрезках). (1)
б) Докажите эту теорему. (2)
22. а) Какие свойства средней линии треугольника вы знаете? (1)
б) Докажите эти свойства. (1)
23. а) Какие вы знаете свойства средней линии трапеции? (1)
б) Докажите эти свойства. (1)
24. а) Сформулируйте теорему Пифагора. (1)
б) Докажите теорему Пифагора. (1)
в) Сформулируйте и докажите обратную теорему. (2)
25. Докажите, что любая наклонная больше перпендикуляра, и что из двух наклонных больше та, у которой больше проекция. (1)
26. а) Сформулируйте неравенство треугольника. (1)
б) Докажите неравенство треугольника. (2)
27. Даны координаты точек A(х1; у1) и В(х2; у2).
а) По какой формуле вычисляется длина отрезка AB? (1)
б) Выведите эту формулу. (1)
28. Выведите уравнение окружности с центром в точке А(х0; у0) и радиусом R. (1)
29. Докажите, что любая прямая в декартовых координатах х, у имеет уравнение вида ах + by + с = 0. (2)
30. Напишите уравнение прямой, проходящей через точки А(х1; у1) и В(х2; у2). Ответ: обоснуйте. (2)
31. Докажите, что в уравнении прямой у = kx + b число k есть тангенс угла наклона прямой к положительному направлению оси абсцисс. (2)
32. а) Какие вы знаете основные свойства движений? (2)
б) Докажите эти свойства. (3)
33. Докажите, что:
а) преобразование симметрии относительно точки является движением; (3)
б) преобразование симметрии относительно прямой является движением; (3)
в) параллельный перенос есть движение. (3)
34. Докажите теорему о существовании и единственности параллельного переноса. (3)
35. Докажите, что абсолютная величина вектора kа равна |к| ? |а|, при этом направление вектора kа при а ? О совпадает с направлением вектора а, если k > 0, и противоположно направлению вектора а, если к < 0. (1)
36. Докажите, что любой вектор а можно разложить по векторам b и с (все три вектора лежат на одной плоскости). (1)
37. Даны векторы а = (а1; а2) и b = (BL; b2). Докажите, что
где ? – угол между векторами.
38. а) Какие вы знаете свойства скалярного произведения векторов? (1)
б) Докажите эти свойства. (2)
39. Докажите, что гомотетия есть преобразование подобия. (1)
40. а) Какие вы знаете свойства преобразования подобия? (1)
б) Докажите, что преобразование подобия сохраняет углы между лучами. (2)
41. а) Сформулируйте признак подобия треугольников по двум углам. (1)
б) Докажите этот признак. (1)
42. а) Сформулируйте признак подобия треугольников по двум сторонам и углу между ними. (1)
б) Докажите этот признак. (1)
43. а) Сформулируйте признак подобия треугольников по трём сторонам. (1)
б) Докажите этот признак. (2)
44. а) Сформулируйте свойство биссектрисы треугольника. (1)
б) Докажите, что биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам. (1)
45. а) Сформулируйте свойство вписанного в окружность угла. (1)