По квантовым меркам живые клетки также являются крупными объектами, поэтому с первого взгляда возможность квантового туннелирования в теплой и влажной среде живых клеток, где атомы и молекулы движутся в основном беспорядочно, кажется невероятной. Однако, как мы уже выяснили, внутренне строение фермента отличается от неупорядоченной среды клетки: движение его частиц представляет собой скорее хорошо поставленный танец, нежели суетливую толкотню. Давайте разберемся, насколько важна эта хореография частиц для жизни.
Квантовое туннелирование электронов в биологии
Де-волт и Чанс провели свой знаменитый эксперимент в 1966 году. Прошло всего несколько лет, и неожиданный температурный профиль эксперимента оказался вполне объяснимым. Джон Хопфилд — еще один американский ученый, сфера интересов которого охватывает несколько научных дисциплин — от молекулярной биологии и физики до компьютерных технологий. Хопфилд знаменит прежде всего как изобретатель ассоциативной нейронной сети, однако его всегда интересовали также и физические процессы, имеющие большое значение для биологии. В 1974 году он опубликовал работу под названием «Перенос электронов между биомолекулами путем термоактивированного туннелирования»[42], в которой предложил теоретическую модель, объясняющую результаты эксперимента Де-волта и Чанса. Хопфилд указал на то, что при высокой температуре энергии колебаний молекул будет достаточно для того, чтобы электроны могли достичь вершины барьера без туннелирования. При снижении температуры энергии колебаний будет недостаточно для того, чтобы поддержать ферментативную реакцию. Однако Де-волт и Чанс обнаружили, что реакция не прекращается при низких температурах. Хопфилд предположил, что при низких температурах электрон приводится в положение, при котором он оказывается на середине склона энергетического холма, при этом расстояние до вершины, которое он должен преодолеть, становится короче, а шансы на успешное осуществление квантового туннелирования — выше. И он оказался прав: перенос электронов путем туннелирования происходит даже при очень низких температурах, как и показали Де-волт и Чанс.
В наши дни не многие ученые ставят под сомнение тот факт, что электроны путешествуют по дыхательным цепям путем квантового туннелирования. Это позволяет отнести важнейшие реакции покорения энергии в живых и (нефотосинтезирующих) микробных клетках строго к сфере квантовой биологии (о фотосинтезирующих клетках мы будем говорить в следующей главе). Однако электроны очень легкие, даже по меркам квантового мира, а их поведение явно имеет волновую природу. Таким образом, их движение нельзя описывать как хаотичное толкание и отскакивание друг от друга по аналогии с классическими маленькими частицами, несмотря на то что во многих стандартных работах по биохимии, опирающихся на планетарную модель атома, их движение описывается именно так. Намного более обоснованными и подходящими являются представления об электронах в атоме как о расфокусированном волновом облаке «электронности», которое окружает крошечное ядро, — «облаке вероятности», о котором мы говорили в главе 1. Таким образом, нет ничего удивительного в том, что электронные волны способны проходить сквозь энергетические барьеры, словно звуковые волны сквозь стены (см. главу 1), даже в биологических системах.
А как насчет более крупных частиц, таких как протоны или даже целые атомы? Возможно ли их участие в квантовом туннелировании в биологических системах? Скорее всего, вы думаете, что это невозможно. Даже один протон в две тысячи раз тяжелее электрона, а ведь известно, что механизм квантового туннелирования весьма избирателен в этом плане: маленькие частицы легко преодолевают барьеры, в то время как крупные частицы испытывают в этом значительные трудности до тех пор, пока расстояние до вершины барьера не становится слишком малым. Тем не менее недавние блистательные эксперименты показали, что даже относительно крупные частицы осуществляют квантовое туннелирование в ходе ферментативных реакций.
Перемещение протонов
Как вы помните, фермент коллагеназа (см. рис. 3.4) не только стимулирует перенос электронов, но и перемещает протоны с целью ускорить распад коллагеновой цепи. Как уже упоминалось, данная реакция является одним из самых распространенных типов манипулирования частицами, которое осуществляют ферменты. Перемещение атома водорода происходит в каждой третьей реакции с участием ферментов. Обратите внимание на то, что под словосочетанием «атом водорода» могут подразумеваться разные частицы: нейтральный атом водорода (H), состоящий из электрона, окружающего ядро атома (протон); положительно заряженный ион водорода (H+), представляющий собой голое ядро — протон без электрона; или отрицательно заряженный ион — атом водорода с дополнительным электроном (H-).
Как скажет вам любой уважающий себя химик или биохимик, перемещение атомов (хорошо, протонов) водорода внутри одной молекулы или между двумя разными не обязательно подразумевает некий квантовый эффект или по крайней мере явление, для объяснения которого мы должны обращаться к замысловатым процессам квантового мира, например к туннелированию. В самом деле, считается, что в большинстве реакций, протекающих при температурах, при которых возможна жизнь, протоны перемещаются от молекулы к молекуле в основном неквантовыми тепловыми скачками. Однако туннелирование протонов происходит в ходе нескольких реакций, для которых характерна относительная независимость от температуры — реакций, похожих на ту, которую провели Де-волт и Чанс, чтобы продемонстрировать туннелирование электронов.
Жизнь возможна при высоких температурах (по меркам квантового мира). Поэтому на протяжении почти всей истории биохимии ученые полагали, что перенос протонов в ферментативных реакциях обусловлен исключительно неквантовым механизмом скачка через энергетический барьер[43]. Уверенность биохимиков пошатнулась в 1989 году, когда Джудит Клинман и ее коллеги из Беркли впервые доказали участие протонов в квантовом туннелировании в ходе ферментативных реакций[44]. Клинман давно указывала на большое значение туннелирования протонов для молекулярного механизма жизни. Более того, она утверждала, что это один из самых важных и наиболее распространенных механизмов во всей биологии. Открытие было совершено ею в ходе изучения конкретного фермента, а именно алкогольдегидрогеназы (АДГ), чья функция заключается в переносе протона из молекулы спирта в другую небольшую молекулу НАД+ и образовании НАДН (никотинамидадениндинуклеотида, молекулы, о которой мы уже говорили как об основном энергетическом барьере клетки). Команде ученых под руководством Клинман удалось подтвердить возможность туннелирования протонов, используя искусную технику кинетического изотопного эффекта. Эта идея хорошо известна в химии и заслуживает нашего с вами внимания, поскольку она доказывает едва ли не главное предположение квантовой биологии. На протяжении книги мы еще много раз будем обращаться к кинетическому изотопному эффекту.
Кинетический изотопный эффект
Вы когда-нибудь пробовали заехать на вершину холма на велосипеде? Если пробовали, то вас наверняка обгоняли пешеходы. На ровной дороге вы, управляя велосипедом, без труда обогнали бы всех пешеходов и даже бегунов. Так почему же езда на велосипеде по склону холма становится менее продуктивной?
Теперь представьте себе, что вы слезли с велосипеда и идете пешком, ведя его за собой по ровной дороге или по склону холма. Сейчас все очевидно. Идя по склону, вы не только должны сами подниматься, но и толкать вверх велосипед. Вес велосипеда, который не имел особого значения при езде по горизонтальной поверхности, теперь работает против вас, когда вы пытаетесь подняться на вершину холма: вы тянете на себе велосипед, на протяжении многих метров преодолевая силу притяжения Земли. Вот почему производители гоночных велосипедов придают большое значение тому, насколько легкой будет модель велосипеда. Безусловно, вес объекта имеет большое значение в том случае, если его придется двигать человеку, однако наш пример с велосипедом скорее говорит о том, что важен не только вес объекта, который приходится толкать, но и тип движения.
А сейчас вообразите, что вам хочется узнать, какая между двумя городами, скажем А и Б, пролегает местность: ровная или холмистая. При этом у вас не было возможности поехать в эти города и проверить это лично. Если вам известно, что между этими городами есть почтовое сообщение, причем почтальоны используют легкие и тяжелые велосипеды, один из вариантов выяснить особенности рельефа таков: необходимо отправить наборы одинаковых посылок из одного города в другой, при этом половину посылок передать с почтальонами на легких велосипедах, а вторую — с почтальонами на тяжелых. Если выяснится, что доставка всех ваших посылок заняла примерно одинаковое время, вы можете сделать вывод о том, что между городами местность скорее ровная. Если же доставка посылок на тяжелых велосипедах заняла гораздо больше времени, вы поймете, что местность между А и Б скорее холмистая. Таким образом, наши почтальоны-велосипедисты занимаются зондированием неисследованных территорий.
Атомы любого химического элемента бывают, как и велосипеды, разного веса. Возьмем, к примеру, водород — самый простой элемент, который тем не менее представляет для нас с вами большой интерес. Каждый элемент определяется количеством протонов в ядре, которое совпадает с количеством электронов, окружающих ядро. Так, в ядре водорода находится один протон, в ядре гелия — два, лития — три и т. д. Однако ядра атомов содержат не только протоны, но и нейтроны, о которых мы упоминали в главе 1, когда говорили о слиянии ядер водорода внутри Солнца. Если в ядро попадают нейтроны, он становится тяжелее и его физические свойства меняются. Атомы одного элемента, отличающиеся количеством нейтронов в ядре, называются изотопами. Обычный изотоп водорода — самый легкий, поскольку состоит только из одного протона и электрона. Это самая распространенная форма водорода. Существует еще два более редких изотопа водорода: дейтерий (D), имеющий один лишний электрон, и тритий (T), у которого два лишних электрона.
Поскольку химические свойства элементов обусловливаются в основном количеством электронов в атомах, разные изотопы одного и того же элемента, отличающиеся количеством нейтронов в атомных ядрах, будут иметь очень сходные, однако не идентичные химические свойства. Кинетический изотопный эффект показывает, насколько чувствительна химическая реакция к замене атомов в молекуле реагирующего вещества на более тяжелые изотопы. Он определяется как отношение скоростей реакции, протекающей с тяжелыми и легкими изотопами. Например, если в реакции участвует вода, тогда атомы водорода в молекулах H2O могут заменяться своими более тяжелыми собратьями — дейтерием и тритием, образуя соответственно молекулы D2O или T2O. Точно как наши почтальоны на велосипедах, реакция может отреагировать на изменение веса атомов, а может и не отреагировать — все зависит от пути, который выберут вещества, вступающие в реакцию, чтобы в итоге стать ее продуктами.
Существует несколько механизмов, обеспечивающих сильные кинетические изотопные эффекты. Одним из этих механизмов является квантовое туннелирование — процесс, который, как и езда на велосипеде, зависит от массы частицы, пытающейся преодолеть барьер. Чем больше масса частицы, тем меньше проявляются ее волновые свойства, а следовательно, тем ниже вероятность того, что частица преодолеет энергетический барьер. Поэтому увеличение массы атома вдвое, например, в случае замены обычного изотопа водорода дейтерием резко снижает вероятность его участия в квантовом туннелировании.
Таким образом, наличие сильного кинетического изотопного эффекта может свидетельствовать о том, что механизм реакции — путь от реагирующих веществ до продуктов — подразумевает квантовое туннелирование. Однако это не единственно возможный вывод, поскольку эффект может быть обусловлен и классическими химическими явлениями, не связанными с законами квантовой механики. Но если в ходе реакции имеет место именно квантовое туннелирование, реакция должна определенным образом отреагировать на изменение температуры: ее темп перестает ускоряться и выравнивается при низкой температуре, как и показал опыт Де-волта и Чанса в случае туннелирования электронов. То же самое показали опыты Клинман и ее команды для фермента АДГ, причем в ходе экспериментов были получены строгие доказательства того, что квантовое туннелирование было в данном случае частью механизма реакции.
Команде ученых под руководством Клинман удалось получить важные доказательства того, что туннелирование протонов часто происходит в ходе ферментативных реакций при температурах, при которых также протекают жизненные процессы. Другие коллективы ученых, в том числе и группа под руководством Найджела Скраттона из Манчестерского университета, проводили подобные эксперименты с другими ферментами и наблюдали кинетические изотопные эффекты, указывающие на то, что реакция сопровождается квантовым туннелированием[45]. И все же вопрос о том, каким образом ферменты поддерживают квантовую когерентность и способствуют возникновению туннельного эффекта, остается противоречивым. Некоторое время считалось, что ферменты не статичны, что в ходе реакций они постоянно совершают колебания, движутся. Например, «челюсти» коллагеназы открываются и захлопываются каждый раз, когда они разрывают коллагеновую связь. Ученые полагали, что подобные движения, наблюдающиеся в ходе реакции, являются случайными либо призваны захватить субстраты и выровнять и упорядочить все атомы, вступающие в реакцию. Однако в наше время специалисты в области квантовой биологии утверждают, что подобные колебания — так называемые «приводные двигатели» и основная их функция — максимально близко подвести друг к другу атомы и молекулы, чтобы квантовое туннелирование частиц (электронов и протонов) стало возможным[46]. К этой теме — одной из самых захватывающих и быстроразвивающихся в квантовой биологии — мы вернемся в последней главе нашей книги.
Так что же составляет «квантовую часть» квантовой биологии
Каждую отдельную биомолекулу, которая существует или когда-либо существовала в любой живой клетке, создали и разрушили ферменты. Ферменты как никакая другая субстанция близки к понятию «движущих сил жизни». Открытие того, что некоторые (а возможно, и все) ферменты функционируют на основе дематериализации частиц в одном месте пространства и мгновенной их материализации в другой точке, позволяет нам по-новому взглянуть на загадку жизни. Несмотря на то что многие вопросы, связанные с функционированием ферментов, пока не до конца понятны (например, роль перемещения белков), нет сомнений в том, что квантовое туннелирование играет большую роль в механизме их работы.
Несмотря на это, мы не можем не принимать во внимание критических замечаний, высказываемых многими учеными. Они признают открытия Клинман, Скраттона и других исследователей, однако утверждают, что квантовые эффекты играют в биологии такую же роль, как и в работе паровозов: их можно наблюдать, однако они в целом никак не способствуют пониманию того, как функционирует вся система. Данный аргумент нередко звучит в спорах о том, научились ферменты извлекать выгоду из квантовых явлений вроде туннелирования в ходе эволюции или нет. Критики отстаивают мнение, что возникновение квантовых явлений в ходе биологических процессов неизбежно благодаря тому, что большинство биохимических реакций попросту протекают на атомном уровне. Квантовое туннелирование вовсе не волшебство; это явление происходит в нашей Вселенной с самого ее возникновения. Разумеется, то, что является результатом «изобретательности» жизни, не может быть фокусом. И все же мы склонны полагать, что возникновение туннельного эффекта на фоне активности фермента не является неизбежным, учитывая условия внутриклеточной среды — те самые высокие температуры, влажность и сумбурную толкотню молекул.
Как вы помните, пространство живой клетки характеризуется теснотой. Клетка буквально набита молекулами со сложной структурой, которые непрерывно находятся в состоянии волнения и турбулентности, а именно в состоянии хаотичного движения. Напомним, молекулы похожи на разлетающиеся в разные стороны и отталкивающиеся друг от друга бильярдные шары (об этом мы говорили в предыдущем разделе в связи с тем, что заставляет паровоз ехать вверх по склону холма). Как вы помните, именно это хаотичное движение частиц рассеивает и разрушает хрупкую квантовую когерентность, благодаря чему привычный для нас мир кажется нам «нормальным». Ученые не ожидали, что квантовая когерентность может сохраняться при молекулярной турбулентности, поэтому наблюдение таких квантовых эффектов, как туннелирование, в бурном море живой клетки стало удивительным открытием. Каких-то десять или чуть больше лет назад большинство ученых отказались от мысли о том, что туннелирование и другие неустойчивые квантовые явления могут наблюдаться в биологических процессах. Факт, что эти явления были обнаружены в биологических средах, говорит о том, что жизнь принимает особые меры, чтобы извлечь максимальную выгоду из квантового мира и поддерживать работу своих клеток. Но какие именно меры принимает жизнь? Каким образом жизни удается держать основного врага квантового поведения частиц — декогерентность — на расстоянии? Это одна из величайших тайн квантовой биологии, к разгадке которой ученые постепенно продвигаются. Об этом мы поговорим в последней главе нашей книги.
Но прежде, чем начать новую тему нашего разговора, давайте вернемся к тому месту, где мы оставили нашу наноподлодку, а именно в активный центр фермента коллагеназы внутри исчезающего хвоста головастика. Мы быстро покидаем активный центр, как только «челюсти» фермента раскрываются, высвобождая коллагеновую цепочку (и нас с вами). Мы прощаемся с молекулой фермента, похожей на моллюска, который отправляется к следующей пептидной связи в цепи, чтобы разрушить ее. Затем мы совершаем короткое путешествие по организму головастика и наблюдаем обычную работу некоторых других ферментов, которая так же важна для жизнедеятельности организма, как и работа коллагеназы. Следуя за клетками, покидающими исчезающий на глазах хвост головастика и направляющимися в развивающиеся задние конечности, мы наблюдаем возникновение новых коллагеновых волокон, которые прокладываются, словно новые железнодорожные пути, для ускорения формирования организма взрослой лягушки. Зачастую они возникают из тех самых клеток исчезающего хвоста. Новые волокна образуются благодаря ферментам, которые захватывают блоки аминокислот, освобожденные коллагеназой, и сплетают их в новые коллагеновые волокна. У нас нет времени на то, чтобы погрузиться в эти ферменты, однако стоит сказать, что в их активных центрах мы наблюдали бы тот же тщательно поставленный танец, что и в коллагеназе, только с обратной последовательностью движений. Биомолекулы, от которых зависит жизнь, — будь то жиры, ДНК, аминокислоты, белки, сахара — формируются и разрушаются различными ферментами. Кроме того, любое действие, которое совершает молодая лягушка, обусловлено деятельностью ферментов. Например, когда животное замечает муху, электрические импульсы передаются от глаз в мозг посредством особых ферментов-нейромедиаторов, содержащихся в нервных клетках. Когда лягушка выбрасывает свой длинный язык, его мышечные сокращения, благодаря которым лягушка ловит муху и тянет добычу в рот, контролируются другим ферментом — миозином, содержащимся в мышечных клетках. Когда муха попадает в желудок лягушки, в дело вступает целая группа ферментов, ускоряющих переваривание и всасывание питательных веществ. Другие ферменты отвечают за то, чтобы эти питательные вещества трансформировались в ткани организма. Ферменты дыхательной цепи, содержащиеся в митохондриях, помогают трансформировать питательные вещества в необходимую для организма энергию.