2. Нарисуйте отрезок АВ длиной 4 см. Отметьте середину отрезка-точку С. Отметьте точку D – середину отрезка АС. На луче DC отметьте точку Е так, чтобы длина отрезка DE была равна 7 см. Чему равно расстояние от В до Е?
3. Разрежьте фигуру, изображенную на рисунке, на 4 одинаковые части.
4. Турист прошел половину пути, затем треть оставшегося пути, после чего ему осталось пройти 6 км. Чему равен весь путь туриста?
5. Мастер за 8 ч делает 80 деталей, а его ученик за 5 ч делает 25 деталей. За сколько часов они изготовят 45 деталей, если будут работать вместе?
6. В мастерской по пошиву одежды от куска сукна в 200 см ежедневно, начиная с 1 декабря, отрезали по 2 дм. Когда был отрезан последний кусок?
4 тур
1. Решите уравнение 18 408: (268 ? 75–19 746) – х = 42.
2. В этом примере умножения больше половины цифр заменено звездочками. Восстановите недостающие цифры:
3. Какой угол составляют между собой часовая и минутная стрелки часов в 16 ч?
4. Строительный кирпич весит 4 кг. Сколько весит игрушечный кирпичик из того же материала, все размеры которого в 2 раза меньше?
5. На уроке физкультуры ученики выстроились в линейку на расстоянии 1 м друг от друга. Вся линейка растянулась на 21 м. Сколько было учеников?
6. В школе 368 учащихся. Докажите, что среди учащихся этой школы обязательно найдутся хотя бы два ученика, отмечающие свой день рождения в один и тот же день.
5 тур
1. Вычислите 66 509 + 141 404: (39 839 – 39 793) + 1985.
2. Решите уравнение 12х + 4 – 5х + 21 = 8x.
3. На какую цифру оканчивается число 42004(произведение 2004 четверок)?
4. 2/5 числа равны 12. Найдите: а) само число; б) 60 % этого числа.
5. Найдите длину стороны квадрата, если его площадь численно равна периметру.
6. Сейчас Сереже 11 лет, а Вове 1 год. Сколько лет будет Сереже и Вове, когда Сережа станет втрое старше Вовы?
6 тур
1. Вычислите (2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9): (1 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8).
2. Подберите число n так, чтобы уравнение nx + 1 = х не имело решений.
3. Мачеха, уезжая на бал, дала Золушке мешок, в котором были перемешаны мак и просо, и велела перебрать их. Когда Золушка уезжала на бал, она оставила три мешка: в одном было просо, в другом – мак, а в третьем – еще не разобранная смесь. Чтобы не перепутать мешки, Золушка к каждому из них прикрепила по табличке: «Мак», «Просо» и «Смесь».
Мачеха вернулась с бала первой и нарочно поменяла местами таблички так, чтобы на каждом мешке оказалась неправильная надпись. Ученик Феи успел предупредить Золушку, что теперь ни одна надпись на мешках не соответствует действительности. Тогда Золушка достала только одно-единственное зернышко из одного мешка и, посмотрев на него, сразу догадалась, где что лежит. Как она это сделала?
4. Кувшин = бутылка + стакан; два кувшина = семь стаканов; бутылка = чашка + два стакана; бутылка = сколько чашек?
5. В кабинете со звуконепроницаемыми стенами висят настенные часы, которые бьют каждые полчаса (один удар) и каждый час (столько ударов, сколько показывает часовая стрелка). Однажды, открыв дверь в кабинет, хозяин услышал один удар часов. После этого хозяин не уходил из кабинета. Через полчаса часы в кабинете пробили еще раз – опять один удар. Спустя полчаса – еще один удар. Наконец, еще через полчаса часы снова пробили один раз. Какое время показывали часы, когда хозяин входил в кабинет?
6. В соревновании участвовали 50 стрелков. Первый выбил 60 очков; второй – 80; третий – среднее арифметическое очков первых двух; четвертый – среднее арифметическое очков первых трех. Каждый следующий выбил среднее арифметическое очков всех предыдущих. Сколько очков выбил 50-й стрелок?
7 тур
1. Вычислите 612 228 + (53 007 – 52 275: 615).
2. Подберите такое натуральное число х, чтобы х(х + 1)(х + 2) = 720.
3. Сколько раз в течение суток часовая и минутная стрелки составляют прямой угол?
4. Найдите двузначное число, которое в семь раз больше цифры его единиц.
5. Тане не хватало 7 р., а Гале – 2 р., чтобы купить по коробке цветных карандашей. Когда они сложили свои деньги, их не хватило даже на покупку одной коробки. Сколько стоит коробка карандашей?
6. Собака погналась за лисицей, которая была на расстоянии 30 м от нее. Скачок собаки равен 2 м, скачок лисицы 1 м. В то время как лисица делает 3 скачка, собака делает 2 скачка. Какое расстояние должна пробежать собака, чтобы догнать лисицу?
8 тур
1. Напишите наименьшее натуральное число, составленное из всех цифр, которое делится на 5.
2. Один из пяти братьев испек маме пирог. Никита сказал: «Это Глеб или Игорь». Глеб сказал: «Это сделал не я и не Дима». Игорь сказал: «Вы оба шутите». Андрей сказал: «Нет, один из них сказал правду, а другой обманул». Дима сказал: «Нет, Андрей, ты не прав». Мама знает, что трое из ее сыновей всегда говорят правду. Кто испек пирог?
3. Известно, что в январе четыре пятницы и четыре понедельника. На какой день недели приходится 1 января?
4. Расставьте 24 человека в 6 рядов так, чтобы каждый ряд состоял из 5 человек.
5. Эта старинная задача была известна еще в Древнем Риме. Богатый сенатор, умирая, оставил жену в ожидании ребенка. После смерти сенатора выяснилось, что на свое имущество, равное 210 талантам, он составил следующее завещание: «В случае рождения сына отдать мальчику две трети состояния (то есть 140 талантов), а остальную треть (то есть 70 талантов) – матери; в случае же рождения дочери отдать девочке одну треть состояния (то есть 70 талантов), а остальные две трети (то есть 140 талантов) – матери».
У вдовы сенатора родились близнецы – мальчик и девочка. Такой возможности завещатель не предусмотрел. Как можно разделить имущество между тремя наследниками с наибольшим приближением к условию завещания?
6. Решите уравнение (х – 2)/3 + 2 = 4.
9 тур
1. Вычислите
2. Решите уравнение
3. Припишите к числу 10 справа и слева одну и ту же цифру так, чтобы полученное четырехзначное число делилось на 12.
4. Гена пошел с папой в тир. Договорились, что Гена делает 5 выстрелов и за каждое попадание в цель получает право сделать еще 2 выстрела. Всего Гена сделал 17 выстрелов. Сколько раз он попал в цель?
5. Как-то в минуту отдыха друзья-мушкетеры – Атос, Портос, Арамис и дАртаньян решили померяться силой при перетягивании каната. Портос с д Артаньяном легко перетянули Атоса с Арамисом. Но когда Портос встал в паре с Атосом, то победа против Арамиса с дАртаньяном досталась им уже не так легко. Когда же Портос с Арамисом оказались против Атоса с дАртаньяном, то ни одна из этих пар не смогла одолеть друг друга. Можете ли вы определить, как мушкетеры распределяются по силе?
6. Ваня и Вася – братья-близнецы. Один из них всегда говорит правду, а другой всегда лжет. Вы можете задать только один вопрос одному из братьев, на который он ответит «да» или «нет». Попробуйте выяснить, как зовут каждого из близнецов.
10 тур
1. Угол в 12 3/4 градуса рассматривают в лупу, дающую четырехкратное увеличение. Какой величины покажется угол?
2. В дремучем Муромском лесу из-под земли бьют два источника мертвой воды: № 1 и № 2. Из источника № 1 мертвую воду может взять каждый, а источник № 2 находится в пещере Кощея, в которую никто, кроме самого Кощея, попасть не может.
На вкус и цвет мертвая вода ничем не отличается от обыкновенной, однако если человек выпьет из какого-нибудь источника, он через сутки умрет. Правда, если он выпьет из источника № 1, спасти его может только одно: если он в течение суток выпьет яд из источника № 2. А если он сразу выпьет яд из источника № 2, то ему уже ничто не поможет.
Иванушка-дурачок вызвал Кощея на дуэль. Условия дуэли были такие: каждый приносит с собой кружку с жидкостью и дает ее выпить своему противнику. Кощей обрадовался: «Ура! Я дам яд № 2, и Иванушка-дурачок не сможет спастись! А сам выпью яд из источника № 1, который Иванушка-дурачок мне принесет, затем выпью свой яд № 2 и спасусь!»
В назначенный день оба противника встретились в условленном месте. Они честно обменялись кружками и выпили то, что в них было. Каковы же были радость и удивление обитателей Муромского леса, когда оказалось, что Кощей умер, а Иванушка-дурачок остался жив! Догадайтесь, как?
3. На волшебной яблоне выросли 15 бананов и 20 апельсинов. Если сорвать один из плодов – вырастет такой же, если одновременно сорвать два одинаковых плода – вырастет апельсин, а если одновременно сорвать два разных плода – вырастет банан. Ася срывала плоды, и в конце концов на яблоне остался ровно один плод. Можете ли вы определить, какой это был плод?
4. Мальчик плотно прижал грань синего карандаша к грани желтого карандаша. Один сантиметр (в длину) прижатой грани синего карандаша, считая от нижнего конца, запачкан краской. Желтый карандаш мальчик держит неподвижно, а синий, продолжая прижимать к желтому, опускает на 1 см, затем возвращает в прежнее положение, опять опускает на 1 см и опять возвращает в прежнее положение; 3 раза он так опускает и 3 раза поднимает синий карандаш (6 движений). Допустим, что за это время краска не высыхает и не истощается. На сколько сантиметров в длину окажется запачканным желтый карандаш после шестого движения?
5. Решите задачу из немецкого рукописного трактата из мюнхенского собрания (XV век).
«Некто имеет работников и деньги. Если он даст каждому работнику 5 монет, у него остается 30, а если 7 монет, то не хватит 30. Спрашивается, сколько у него работников?»
6. Решите уравнение
Высшая лига
1 тур
1. Найдите значение выражения (a ? a ? a – b ? b ? b): (а ? а + a ? b + b ? b), если а = 17, Ь = 14.
2. Решите уравнение 72: (38 ? 26: (17–92: х)) = 2.
3. Расставьте вместо букв цифры так, чтобы получилось верное равенство (разным буквам соответствуют разные цифры): У – Р = А: В = Н ? Е = Н + И = Е.
4. Из села по дороге в полдень вышла Таня со скоростью 6 км/ч. В 13 ч 00 мин вслед за ней вышел Игорь со скоростью 8 км/ч. А в 14 ч 00 мин из того же села вдогонку на велосипеде выехала Света. С какой скоростью должна ехать Света, чтобы догнать Игоря в тот момент, когда Игорь догонит Таню?
5. В команде 7 мальчиков и 6 девочек. Вначале все мальчики обменялись рукопожатиями друг с другом. Затем каждый мальчик обменялся рукопожатием с каждой девочкой. А вот девочки друг другу руки решили не жать. Сколько всего было рукопожатий?
6. Дан квадрат АВСЕ со стороной 4 см. Точка К – середина стороны АВ, точка М – середина стороны ВС. Найдите площадь треугольника МКЕ.
2 тур
1. На могиле Диофанта (древнегреческий математик) имеется надпись: «Шестую часть его жизни заняло детство, двенадцатую – отрочество, седьмую – юность. Затем протекла половина его жизни, после чего он женился. Через 5 лет у него родился сын, а когда сыну минуло 4 года, Диофант скончался». Сколько лет жил Диофант?
2. Найдите х, если 54 км/ч = х м/с.
3. Алеша дал Боре столько яблок, сколько у Бори было. Потом Боря дал Алеше столько яблок, сколько у того стало. После этого у мальчиков оказалось по 4 яблока. Сколько яблок было у каждого первоначально?
4. Дядя Федор, кот Матроскин, Шарик и почтальон Печкин поспорили: кто больше выпьет молока. После того, как молоко было выпито, каждый из них высказался:
Дядя Федор: «А все-таки я не оказался последним!» Кот Матроскин: «Я выпил не больше, но и не меньше всех». Шарик: «Я маленький, поэтому выпил меньше всех». Почтальон Печкин: «Я вас всех победил!» Один из них сказал неправду. Кто победил в соревновании, и кто сказал неправду?
5. Вычислите 7288: 8 + 6363: 7 – 2000 + 1000: 250 + 276.
6. Частное равно 100. Делимое уменьшили на делитель. Узнайте новое частное.
3 тур
1. Найдите наибольшее целое число, дающее при делении на 13 неполное частное 17.
2. Сколько существует натуральных двузначных чисел, у которых первая цифра в два раза больше второй?
3. Найдите закономерность в последовательности чисел и определите, сколько в этой последовательности трехзначных чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...
4. Три землекопа за 2 ч выкопали три ямы. Сколько ям выкопают шесть землекопов за 5 ч?
5. Сколько треугольников «спрятано» на рисунке?
6. Летела стая гусей, а навстречу им летит один гусь и говорит: «Здравствуйте, сто гусей!» А передний старый гусь ему и отвечает: «Нет, нас не сто гусей! Вот, если б нас было еще столько, да еще полстолька, да еще четверть столько, да ты, гусь, то было бы сто гусей, а теперь... Вот и рассчитай-ка, сколько нас?»
4 тур
1. 3 кедровых ореха можно обменять на 2 лимона, а 3 лимона можно обменять на 4 яблока. Сколько кедровых орехов можно обменять на 16 яблок?
2. Из цифр 0, 2, 3, 5, 8 составьте все трехзначные числа, сумма цифр в каждом из которых равна 8 (цифры в числе могут повторяться).
3. Путь, пройденный туристом за один день, оказался в три раза больше, чем половина оставшегося пути. Какую часть всего пути прошел турист за день?
4. Придумайте задачу, которая решалась бы с помощью уравнения 2 ? (х + 1) + х = 32.
5. Найдите площадь треугольника, изображенного на рисунке. Площадь одной клетки равна 1.
6. В токарном цехе вытачиваются детали из стальных заготовок, из одной заготовки – деталь. Стружки, оставшиеся после обработки трех заготовок, можно переплавить и получить ровно одну заготовку. Сколько всего деталей можно сделать из 9-ти заготовок? А из 14-ти? Сколько нужно взять заготовок, чтобы получить 40 деталей?
5 тур
1. Сумма шести различных натуральных чисел равна 22. Найдите эти числа.
2. Пятиклассникам очень понравилась поездка в Великий Устюг, и они решили поехать туда снова, дабы навестить веселых Дедов Морозов. Ежемесячно каждый ученик вносил определенное количество рублей (без копеек), одинаковое для всех, и в течение пяти месяцев было собрано 49 685 р. Сколько было в группе учеников, и какую сумму внес каждый?
3. Четыре подруги пришли на каток, каждая со своим братом. Они разбились на пары и начали кататься. Оказалось, что в каждой паре «кавалер» выше «дамы» и никто не катается со своей сестрой. Самым высоким в компании был Юра Воробьев, следующим по росту – Андрей Егоров, потом Люся Егорова, Сережа Петров, Оля Петрова, Дима Крымов, Инна Крымоваи Аня Воробьева. Определите, кто с кем катался?
4. Простые числа имеют только два различных делителя – единицу и само это число. Найдите первые три числа, имеющие ровно три различных делителя. Догадаетесь ли вы, какие числа имеют только три различных делителя?
5. Полный бидон с молоком весит 34 кг, а наполненный до половины – 17 кг 500 г. Сколько весит пустой бидон?
6. Из литра молока получают 150 г сливок, а из литра сливок – 300 г масла. Сколько масла получится из 100 л молока?
6 тур
1. На почтовом ящике написано: «Выемка писем производится пять раз в день с 7 до 19 ч». И действительно, первый раз почтальон забирает почту в 7 ч утра, а последний – в 7 ч вечера. Через какие интервалы времени вынимают письма из ящика?
2. Вычислите 66 509 + 141 404: (39 839 – 39 793) + 1985.
3. В классе учится меньше чем 50 школьников. За контрольную работу седьмая часть учеников получила пятерки, третья – четверки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько всего учащихся в классе?
4. Ковбой Билл зашел в бар и попросил у бармена бутылку виски за 3 доллара и 6 коробков непромокаемых спичек, цену которых он не знал. Бармен потребовал с него 11 долларов 80 центов (1 доллар – 100 центов), и в ответ на это Билл вытащил револьвер. Тогда бармен пересчитал стоимость покупки и исправил ошибку. Как Билл догадался, что бармен пытался его обсчитать?
5. Однажды на лестнице была найдена странная тетрадь. В ней было записано четыре утверждения:
«В этой тетради ровно одно неверное утверждение»;
«В этой тетради ровно два неверных утверждения»;
«В этой тетради ровно три неверных утверждения»;
«В этой тетради ровно четыре неверных утверждения».
Есть ли среди этих утверждений верные, и если да, то какие?
6. Вася взял у товарища книгу на три дня. В первый день он прочел полкниги, во второй – треть оставшихся страниц, а в третий день прочитал половину прочитанного за первые два дня. Успел ли Вася прочитать всю книгу за три дня? Ответ обоснуйте.
7 тур
1. – Еще веревочку? – спросила мать, вытаскивая руки из лоханки с бельем. – Можно подумать, что я вся веревочная. Только и слышишь: веревочку да веревочку. Ведь я вчера дала тебе порядочный клубок. Куда ты ее девала?
– Во-первых, половину ты сама взяла обратно. Половину того, что осталось, взял у меня Том, чтобы удить в канаве колюшек. Осталось совсем немного, да из того еще папа взял половину для починки подтяжек, которые лопнули у него от смеха, когда случилась беда с автомобилем. А после понадобилось еще сестре взять две пятых оставшегося, чтобы завязать свои волосы узлом.
– Что же ты сделала с остальной веревочкой?
– С остальной? Остальной-то было всего-навсего 30 см! Вот и устраивай телефон из такого обрывка...
Какую же длину имела веревочка первоначально?
2. Ира, Наташа, Алеша и Витя собирали грибы. Наташа собрала больше всех, Ира не меньше всех, а Алеша – больше, чем Витя. Верно ли, что девочки собрали грибов больше, чем мальчики?
3. Чему равна площадь треугольника со сторонами 8, 7 и 15?
4. Пять первоклассников стояли в шеренгу и держали 37 флажков. У всех справа от Таты – 14 флажков, справа от Яши – 32, справа от Веры – 20, справа от Максима – 8. Сколько флажков у Даши?
5. Как при помощи чашечных весов без гирь разделить 24 кг гвоздей на две части – 9 и 15 кг?
6. Решите уравнение
8 тур
1. Шли три крестьянина и зашли на постоялый двор отдохнуть и пообедать. Заказали хозяйке сварить картофель, а сами заснули. Хозяйка сварила картофель, но не стала будить постояльцев, а поставила миску с картофелем на стол и ушла. Проснулся один крестьянин, увидел картофель и, чтобы не будить товарищей, сосчитал картофель, съел свою долю и снова заснул. Вскоре проснулся другой; ему невдомек было, что один из товарищей уже съел свою долю, поэтому он сосчитал весь оставшийся картофель, съел третью часть и опять заснул. После него проснулся третий; полагая, что он проснулся первым, он сосчитал весь оставшийся в миске картофель и съел третью часть. Тут проснулись его товарищи и увидели, что в миске осталось 8 картофелин. Тогда только объяснилось дело. Сосчитайте, сколько картофелин подала на стол хозяйка?