Павел Амнуэль Научная фантастика и фантастическая наука
Когда в январе 2005 года исследовательский зонд «Гюйгенс» совершил посадку на поверхность Титана — самого большого спутника планеты Сатурн, — сообщения об этом действительно выдающемся событии современной астронавтики появились под заголовками «Неожиданные открытия в космосе», «Ученые говорят: «Мы такого не ждали!». У многих читателей и зрителей телевизионных каналов сложилось стойкое убеждение: ученые никогда не знают заранее, что именно они обнаружат, посадив межпланетную станцию на Титан, Марс, Венеру или даже Луну. То есть, в общих чертах, конечно, они предполагают существование таких-то и таких-то условий, иначе вообще не смогли бы сконструировать свои аппараты, но действительность всегда опровергает их предположения, ибо подлинные научные открытия непредсказуемы, иначе — какие же это открытия?
Такое мнение не сегодня сложилось и не через год исчезнет из употребления. Достаточно почитать многочисленные статьи и монографии о сути научного творчества — идея о принципиальной непредсказуемости научных открытий цветет там пышным цветом и корнями уходит в, казалось бы, совершенно неопровержимый опыт многих поколений ученых. Разве мог Галилей, прежде чем направил в небо свою подзорную трубу, предполагать, что увидит на Луне горы, а рядом с Юпитером — четыре его спутника? Разве мог Беккерель предвидеть, к чему приведет его забывчивость — случайно оставил непроявленную фотопластинку рядом с солями радия, а оказалось… А Мендель разве мог знать заранее, к чему приведут его эксперименты с горошком? Казалось бы, ответы очевидны: никто ничего заранее знать не мог, поскольку наука идет вперед непроторенными путями; потому и интересно наукой заниматься, что не знаешь, какое именно открытие ожидает тебя за тем или иным научным поворотом…
В общем-то, в таком ответе, конечно, есть определенный резон, но он лишь частично описывает реальное положение дел. Действительно, существуют (пока!) такие открытия, предвидеть которые невозможно или, по крайней мере, чрезвычайно затруднительно. Назовем их открытиями первого класса. К таким открытиям принадлежит, например, упомянутое выше открытие явления радиоактивности.
Есть открытия, которые можно было предвидеть, а не предсказаны они оказались потому, что ученые не дали себе труда проанализировать все исследовательское поле. Назовем их открытиями второго класса. Таким было, например, открытие пульсаров в 1967 году — неожиданное для многих астрофизиков, но вполне предсказуемое, поскольку теории нейтронных звезд к тому времени исполнилось уже тридцать лет, а то, что звезды вращаются, имеют магнитные поля и, следовательно, способны излучать узконаправленные потоки частиц, можно было предположить без особых усилий научного воображения (собственно, потому правильная гипотеза о природе пульсаров не замедлила появиться).
Открытия третьего класса — это такие, которые были именно предсказаны, открытия, которые ожидались, но не вполне соответствовали ожиданиям. Таковы, например, открытия, сделанные во время посадки «Гюйгенса» на Титан. Разве не ожидали ученые, что атмосфера этого спутника Сатурна окажется плотной и насыщенной метаном и его соединениями? Разумеется, ожидали — с таким расчетом и аппаратуру конструировали, и приборы градуировали. Разве не ожидали, что по поверхности Титана будут течь метановые реки? Ожидали, конечно, и если не говорили об этом заранее, то не потому, что не смогли предвидеть, а, скорее, — чтобы не обвинили в излишнем полете воображения.
И есть, наконец, открытия четвертого класса — в точности такие, какие были предсказаны, это открытия-следствия из предложенной кем-нибудь теории, объясняющей ранее обнаруженное явление. Если говорить об упомянутых выше пульсарах, то, когда появились первые теоретические работы, связанные с физикой их излучения, легко было предсказать открытие нейтронных звезд, излучающих в оптическом и рентгеновском диапазонах. Разумеется, и оптические, и рентгеновские пульсары были обнаружены несколько лет спустя, полностью подтвердив выводы теоретиков.
Итак, далеко не все открытия непредсказуемы. Напротив, большую их часть в той или иной степени предсказать было не только возможно, но и необходимо.
Теории прогнозирования открытий пока не существует, но определенные закономерности, позволяющие исследователю предвидеть в той или иной степени результат своих экспериментальных или теоретических изысканий, обнаружены и описаны. Это, к примеру, использование так называемого морфологического анализа для полного «обследования» всех мыслимых следствий предлагаемой теории. Морфологический анализ впервые был предложен американским астрофизиком Францем Цвикки в 1942 году и описан в его книге «Морфологическая астрономия». Кстати, именно с помощью морфологического метода Цвикки предсказал в сороковых годах существование звезд, которые он назвал «адскими» и которые впоследствии, когда их действительно обнаружили, получили всем теперь известное название «черные дыры».
Другой метод прогнозирования научных открытий, являющийся развитием морфологического анализа, — так называемый метод фантограмм, — предложен был автором теории решения изобретательских задач (ТРИЗ) Генрихом Сауловичем Альтшуллером. Третий метод — «диверсионный», — предложен советским изобретателем Волюславом Владимировичем Митрофановым.
О каждом из перечисленных методов можно рассказать много интересного, каждый из этих методов так или иначе используется учеными в научной работе — даже если сами исследователи об этом не подозревают, так же, как известный мольеровский персонаж до некоторого времени не подозревал, что, оказывается, разговаривал не просто так, но прозой.
Сейчас, однако, речь пойдет не о методах прогнозирования открытий в науке, а о том, как эти методы сближают науку с деятельностью, к которой многие ученые относятся с откровенным пренебрежением, над ошибками злорадствуют, а достижения объявляют игрой случая, а не результатом закономерного развития.
Речь идет о научной фантастике.
Сразу оговорюсь — не обо всей многообразной фантастической литературе пойдет разговор. Не о фэнтези, не о космической опере, не о фантастике сатирической, юмористической или приключенческой. Поговорим о поджанре научной фантастики, который на Западе получил наименование hard science fiction («жесткая» научная фантастика). Авторы, работающие в этом поджанре, сознательно ставят себя в положение ученых, изучающих по всем законам науковедения новое исследовательское поле и прогнозирующих новые открытия точно по тем же правилам, какие — сознательно или нет — используются научными работниками в их повседневной практике.
Пионером hard science fiction был Жюль Верн, а затем в этом поджанре работали такие известные авторы, как Герберт Уэллс, Хьюго Гернсбек, Александр Беляев, Иван Ефремов, Генрих Альтов, Айзек Азимов. В той или иной степени на поле hard science fiction «приходили» и другие авторы — Роберт Хайнлайн, Гарри Гаррисон, Георгий Гуревич, Дэн Симмонс…
Нard science fiction — это не литература в том ограниченном понимании, какое обычно имеется в виду, когда говорят о «художественных текстах», «человековедении», «беллетристике» и т. д. Нard science fiction — это естественный синтез литературы и науки. Будучи по определению литературой (кто скажет, что тексты Жюля Верна или Герберта Уэллса не удовлетворяют самым строгим литературным критериям?), hard science fiction использует законы научного творчества, не повторяя или популяризируя, как это обычно полагают литературные критики, новые достижения науки, а создавая собственную науку, которая то идет вровень с наукой «обычной», то отстает от нее, но в лучших образцах опережает «обычную» науку, предсказывая открытия, которые будут сделаны «на самом деле» много лет спустя.
Законы фантастической науки, создаваемой авторами hard science fiction, ничем по сути не отличаются от законов «обычной» науки, разве что фантасты ставят — в отличие от ученых — исключительно мысленные эксперименты и «продвигают» фантастическую науку в соответствии с получаемыми результатами. Результат же мысленного эксперимента в фантастике зависит от воображения автора.
Кстати, именно воображение автора-фантаста достаточно часто позволяет ему более правильно (не с точки зрения литературы, а с точки зрения науки!) предвидеть направление развития той или иной научной дисциплины, чем это делает ученый.
Известный советский физик Дмитрий Иванович Блохинцев лет тридцать назад писал: «Насколько я могу судить, большая часть их (писателей-фантастов — П.А.) предсказаний попросту ошибочна. Однако они создают модели, которые могут иметь и на самом деле имеют влияние на людей, занятых в науке и технике. Я уверен, например, в таком влиянии «Аэлиты» и «Гиперболоида инженера Гарина» А.Н.Толстого, увлекших многих идеями космических полетов и лазера».
Утверждение Д.И.Блохннцева о том, что «большая часть их предсказаний попросту ошибочна», нуждается в комментарии. Во-первых, часто за предсказания фантастов принимается то, что предсказанием не является. Во-вторых, ошибочна и большая часть прогнозов и идей, которые выдвигаются учеными в процессе исследования.
Видимая строгость и обоснованность научных гипотез часто заставляют забывать о том, что подавляющая их часть сгинет без следа. Выживают лишь жизнеспособные идеи и гипотезы (как и в фантастике!). Метод проб и ошибок, обычный в науке метод работы, требует рассмотрения всевозможных идей, из которых лишь одна окажется верной и сохранится для будущего. Прогноз, составленный по всем правилам современной прогностики, если постоянно его не корректировать с учетом меняющегося прогнозного фона, также в большинстве случаев окажется ошибочным к тому моменту, для которого прогноз составлялся.
Прогноз динамичен, он меняется вместе с жизненными обстоятельствами, чтобы оказаться верным в будущем.
Фантастическое произведение статично. Оно написано и опубликовано. Идея, высказанная в нем, закреплена и не меняется. Динамичность предсказания возникает в том случае, когда идею подхватывает и видоизменяет другой фантаст, учитывающий новую ситуацию в науке и технике. Новое фантастическое произведение закрепляет предсказание в новой точке. Но читатель обычно не учитывает такую преемственность предсказаний, сближающую их с динамизмом прогнозов, сделанных по законам прогностики. Читатель рассматривает первое по времени произведение и считает, что фантаст ошибся. Разумеется, читатель прав. Но тогда нужно и в науке всегда помнить о тех первых прикидках новых теорий, которые тоже в большинстве случаев были ошибочными.
Есть и еще один момент. Фантастическое произведение с ошибочным предсказанием, если оно хорошо написано, если это настоящая литература, будет долго волновать читателя и служить критикам примером того, что фантасты ошибаются. Ошибочная же научная идея живет не дальше того момента, когда ее сменяет идея, более близкая к истине. Вот и получается, что ошибки ученых «растворяются» со временем, ошибки фантастов живут долго.
Приведу пример. В 1946 году астрономы еще не знали о том, что нейтронные звезды существуют, до открытия пульсаров оставалось более 20 лет. Но уже прошли 12 лет после опубликования работы Вальтера Бааде и Франца Цвикки, где говорилось о том, что нейтронные звезды должны возникать в результате вспышек Сверхновых. Общее же мнение состояло в том, что все звезды в конце концов становятся белыми карликами. Именно в 1946 году вышел из печати рассказ Мюррея Лейнстера «Первый контакт» о встрече звездолета землян со звездолетом чужаков, летевшим из глубин Галактики. Встреча произошла в Крабовидной туманности, вблизи от ее центральной звезды. Согласно тогдашним (научным!) представлениям это был белый карлик. Согласно современным — это нейтронная звезда. Фантаст воспользовался в рассказе общим (научным!) мнением — и ошибся. Об ошибочной научной гипотезе давно забыли, рассказ «Первый контакт» все еще читают и говорят: фантаст ошибся…
* * *Фантастическая наука развивается так же, как «обычная» наука, выдвигая новые кардинальные идеи, разрешая возникающие противоречия, ставя эксперименты (мысленные) и создавая теории, проверяемые практикой (литературной).
Вот пример: реальная наука в конце двадцатых годов ХХ века только-только начала решать проблемы «междупланетных сообщений», а в фантастике именно тогда возникла настоятельная необходимость создания межзвездного транспорта. К Луне уже летали (Герберт Уэллс, Ежи Жулавский и др.), к Венере и Марсу — тоже (достаточно вспомнить венерианскую и марсианскую эпопеи Эдгара Берроуза), Меркурий как литературная цель был не интересен, большие планеты — тем более, Плутон еще не открыли. Для того, чтобы написать в космической фантастике нечто новое, нужна была новая ЦЕЛЬ. Какая? Поскольку все планеты Солнечной системы были «исследованы», оставалось одно — отправить героя литературного произведения к звездам. Ситуация просто требовала, чтобы кто-то написал наконец о полете к иной звезде. И такой роман появился в 1928 году — «Звездный жаворонок» Уилбура Смита. Роман был плохой, никто его сейчас и не помнит, но важен факт — литературная ситуация потребовала сделать новый шаг в фантастической науке, и этот шаг был сделан.
Затем фантастическая наука, естественно, развивалась в направлении совершенствования звездолетов. Сначала были отработаны обычные субсветовые корабли и описаны все следствия таких полетов (см. «Пасынки Вселенной» Роберта Хайнлайна, «Замкнутый мир» Брайана Олдисса, «Поколение, достигшее цели» Клиффорда Саймака, а также многочисленные произведения, иллюстрирующие «парадокс близнецов»). Наконец, эта тема была отработана — в западной фантастике в начале пятидесятых, в советской значительно позднее. Тогда понадобились звездолеты, которые могли бы доставлять астронавтов к звездам за считанные недели — литературные цели не могли больше уживаться с необходимостью многолетних путешествий. Естественно, пришлось сделать фантастическое открытие, и появились звездолеты, летящие в под-, над- и нуль-пространстве. Как и в «обычной» науке, было сделано сначала открытие (новый вид пространства), затем изобретение (звездолет, летящий в этом новом виде пространства). Если читатель скажет, что многомерные пространства уже описаны математиками (скажем, пятимерное пространство Калуцы, 1922 год), нужно иметь в виду, что фантастические гипер- и многомерные пространства были пространствами физическими, в которых можно было летать на звездолетах, совершать подвиги — в отличие от математических пространств, не имевших, по мысли авторов, прямых связей с физической реальностью.
В фантастике многомерные пространства появились в конце сороковых годов, а многомерные пространства в физике — тридцать лет спустя.
* * *Аналогично развивалось в фантастической науке представление о многомирии — о том, что существуют миры, подобные нашему, но отличные от него. О том, что существует «на самом деле» не единственная Вселенная, представленная нашему опыту, но множество вселенных, отличающихся от нашей и развивающихся параллельно нашей. Множество миров, связанных с нашим миром самыми разными связями — духовными и (или) материальными.
Сейчас идея многомирия — Мультиверсума — уже стала настолько популярна в физике, что к ней стали относиться серьезно, о Мультиверсуме пишут диссертации, проводят философские и физические конференции и, естественно, публикуют серьезные исследования в научных журналах.
Научное исследования проблемы многомирия началось в 1957 году, когда американский физик Хью Эверетт-мл. опубликовал тезисы своей докторской диссертации, названной «Формулировка относительных состояний в квантовой механике». Причиной появления работы Эверетта стало давнее противоречие между двумя разными квантовомеханическими формулировками — волновой и матричной. Эверетт это противоречие разрешил, и его исследование привело почти через полвека к появлению в физике концепции Мультиверсума, многомирия.
Фантастическая наука шла к той же идее своим путем. Множество открытий в фантастике сделали классики жанра Жюль Верн и Герберт Уэллс. Это понятно — они были первыми «фантастическими учеными», они первые использовали приемы науковедения для создания фантастических идей. Роль Верна и Уэллса в фантастике можно сравнить с ролью Галилея в развитии астрономии. Среди открытий Уэллса можно назвать открытие возможности путешествий во времени («Машина времени», 1895), открытие антигравитации («Первые люди на Луне»,), открытие пищи, с помощью которой можно выращивать великанов («Пища богов»,) и т. д. В 1895 году, том же году, когда была опубликована «Машина времени», Герберт Уэллс открыл для фантастики существование параллельных миров — в рассказе «Дверь в стене».
Существует мир, в котором ты проживаешь жизнь иначе, чем здесь. Существует мир, в котором ты можешь изменить свою судьбу, поступить не так, как поступил в «реальной» жизни. Чтобы попасть в тот, другой мир, нужно сделать лишь шаг, нужно открыть маленькую зеленую дверь в стене и оказаться «там». Оба мира существуют как бы рядом — именно «как бы», потому что «на самом деле» мы не можем сказать, где тот, другой мир находится. Мы просто знаем, что он существует и не менее реален, чем наше привычное мироздание.
Для фантастики идея «Двери в стене» была столь же революционна, как идея Эверетта (высказанная 62 года спустя!) для физики. Фантастическая наука также не сразу приняла идею параллельных миров на вооружение — как и физики далеко не сразу признали возможную правильность идей Эверетта.
15 лет спустя после уэллсовской «Двери в стене» был опубликован рассказ русского автора Николая Морозова «На границе неведомого» — идея «иномирия» была повторена, но дальнейшего развития пока не получила.