Изменения в печени неизбежно приведут к изменению количества холестерина в крови, так как печень является органом, в котором образуется холестерин и происходит его перевод в другие вещества.
Польза и вред холестерина. Особенности обмена холестерина у работников газовой промышленности
Теперь поговорим о холестерине. Повышения этого показателя крови боятся многие, что неудивительно, ведь от последствий повышения холестерина, таких как ишемическая болезнь сердца, инфаркт миокарда, инсульт и многие другие, смертность гораздо выше, чем от других заболеваний.
Уровень холестерина и триглицеридов в крови – это биохимический показатель качества обмена жиров (липидов). Их повышение может являться одной из причин развития атеросклероза. Атеросклероз является одним из последствий нарушения липидного обмена. Вредные производственные факторы, несбалансированное питание, избыточный вес, стрессы, курение, алкоголь могут являться причинами таких нарушений. Этот набор назван в официальной медицине «факторами риска» развития ишемической болезни сердца, инфаркта миокарда, инсульта и других заболеваний. Факторы риска, то есть условия, при которых происходит нарушение липидного обмена, существуют, но не всегда приводят к развитию заболеваний [26].
Поэтому зададимся вопросом: почему при одинаковых условиях у одних возникают одни заболевания, у других – другие, а у третьих их вовсе нет? Для того чтобы ответить на этот вопрос, необходимо рассмотреть функции и движение холестерина в организме.
Итак, в пище присутствуют четыре больших класса органических веществ: белки, углеводы, нуклеиновые кислоты и липиды. Холестерин (ХС) и триглицериды (ТГ) не похожи по структуре, но относятся к жирам. Они поступают в организм человека в составе мяса, молочных продуктов и др. И синтезируются организмом человека преимущественно в печени и в жировой ткани (это касается только триглицеридов). Подавляющая часть холестерина синтезируется самим организмом и только 20 % поступает с пищей.
Как и другие липиды, холестерин и триглицериды являются незаменимыми компонентами клеточных мембран. Из холестерина в печени образуются желчные кислоты, а потом желчь. Желчь необходима не только для всасывания жиров из пищи. Холестерин – исходный источник для синтеза стероидных гормонов (кортизола в надпочечниках – необходим для синтеза адреналина и норадреналина, прогестерона в яичниках – половой гормон женщин, тестостерона в яичках – половой гормон мужчин) и также ряда других гормонов. В коже из холестерина образуется витамин Д. Триглицериды – это основные жиры, находящиеся в жировой ткани. Их главная функция энергетическая: триглицериды являются альтернативным глюкозе источником энергии. При недостатке глюкозы начинают сжигаться триглицериды. Поэтому, когда мы голодаем, мы худеем. Но необходимо запомнить, это нам пригодится позже, что без кислорода триглицериды не могут сжигаться.
Как все жиры, холестерин и триглицериды нерастворимы в воде. Поэтому, чтобы доставить их по назначению, необходимо связать их с водорастворимыми веществами. Этими веществами в организме служат белки. Эти белки называются апобелками (или апопротеинами), а комплекс белков и липидов называется липопротеинами. Липопротеины состоят из липидной сердцевины, которая окружена водорастворимыми апобелками. В крови циркулируют четыре вида липопротеинов с различным содержанием холестерина, триглицеридов и апобелков. По содержанию этих и, соответственно, относительной плотности различают: хиломикроны, липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП). Рассмотрим каждый из них:
1. Хиломикроны – это самые большие частицы и имеют самую низкую плотность. Хил омикрон на 90 % состоит из триглицеридов и содержит всего 5 % холестерина, остальное – апобелок и другие липиды. После того как пища поступила в 12-перстную кишку, начинают выделяться желчь и соки поджелудочной железы, благодаря которым происходит расщепление жиров. А благодаря микрофлоре и ворсинкам кишечника они всасываются. Апобелок (белок, переносящий липиды в крови), который находится в клетках кишечника, набирает триглицериды и переносит их с током крови в жировую ткань, где они депонируются, и в мышцы, где используются как источник энергии. В жировой ткани триглицериды хранятся в адипоцитах (жировых клетках), и при недостатке глюкозы они расщепляются с образованием большого количества энергии. Поэтому когда мы занимаемся физкультурой, то мы худеем. А оставшийся в хиломикроне холестерин поступает в печень.
2. Липопротеины очень низкой плотности (ЛПОНП) образуются в печени. Они состоят из триглицеридов (60 %), холестерина (15 %), апобелка (10 %) и других липидов. Главная функция ЛПОНП – транспорт триглицеридов, образованных в печени, в жировые и мышечные клетки. Таким образом, природа продублировала поступление триглицеридов в жировую и мышечную ткани. Необходимо отметить, что процессы всасывания триглицеридов из кишечника и синтез триглицеридов в печени взаимосвязаны. Но об этом мы расскажем ниже.
3. По мере передачи триглицеридов жировой и мышечной ткани липопротеин очень низкой плотности уменьшается в размерах, становится более плотным и переходит в липопротеин низкой плотности (ЛПНП) и содержит уже 10 % триглицеридов и 55 % холестерина, а остальное – апобелок (белок, переносящий липиды в крови) и другие липиды. Теперь функция комплекса заключается в переносе непищевого холестерина ко всем тканям. Основным переносчиком холестерина в организме является именно ЛПНП (70 %). Потом обедненный комплекс поступает снова в печень, где и утилизируется. Именно ЛПНП является опасным для развития атеросклероза.
4. Липопротеины высокой плотности (ЛПВП) – это самый малый комплекс и самый плотный, т. к. содержит 50 % апобелков и всего 20 % холестерина, а остальное – другие липиды.
Функции холестерина
ЛПВП синтезируется в печени и поначалу состоит в основном из одного апобелка, но по мере циркуляции в кровотоке он насыщается холестерином. Их основная функция – транспортировать излишки холестерина из непеченочных клеток обратно в печень для дальнейшей утилизации. Около 30 % холестерина входит в состав ЛПВП. Этот комплекс очень полезный. Чем выше уровень физической нагрузки, тем больше липопротеидов высокой плотности циркулирует в крови.
Таким образом, в печени у холестерина несколько путей: либо образование желчных кислот, либо поступление в свободном виде в желчь (крайне малая часть), либо образование комплекса с апобелками (белок, переносящий липиды в крови) [8,26].
Необходимо отметить, что холестерин и первичные желчные кислоты похожи по структуре, но отличаются, в частности, отсутствием у холестерина аминокислотной связи. И перевод из холестерина в желчные кислоты происходит только в печени, и только в присутствии кислорода. Первичные желчные кислоты синтезируются в печени из холестерина и секретируются в желчь в виде соединения с аминокислотами, в частности с аминокислотами глицином и таурином.
Уровень холестерина тесно связан с уровнем желчных кислот: чем больше холестерина синтезируется печенью, тем меньше синтезируется желчных кислот, и наоборот. Это связано с тем, что они похожи по химической структуре (стероидных), но отличаются по функциям. Желчь, в состав которой входят и желчные кислоты, и свободный холестерин, наряду со многими другими веществами поступает в желчный пузырь, а оттуда – в двенадцатиперстную кишку либо в нее напрямую. Это зависит от приема пищи, состава пищи и т. д. Во время приема пищи открывается сфинктер между желчевыводящим проходом и 12-перстной кишкой (фатеров сосочек) и желчь начинает выполнять свои функции по перевариванию пищи. Интенсивность всасывания холестерина из пищи в кишечнике регулируется желчными кислотами: чем больше желчных кислот, тем меньше холестерина усваивается.
Рассмотрим желчные кислоты более подробно, так как они играют очень важную роль при всасывании холестерина из пищи. Желчь, выработанная в печени, содержит первичные желчные кислоты. Они имеют по две активные аминокислотные связи. В процессе переваривания на место аминокислот встают жирные кислоты, содержащиеся в пище, и эти комплексы всасываются в кишечнике.
Далее желчные кислоты как бы отдают жирные кислоты. После этого желчные кислоты в подвздошной кишке всасываются в кровь и соединяются с белками, преимущественно с альбуминами и в меньшей степени с глобулинами, и только 15 % находятся в свободном состоянии. В течение однократного прохождения крови через печень гепатоциты (клетки печени) улавливают 90 % циркулирующих желчных кислот. Поступившие в печень желчные кислоты подвергаются биотрансформации с последующей секрецией в желчные капилляры. Это называется печеночно-кишечный кругооборот желчных кислот [4, 13, 24].
Однако не все первичные желчные кислоты подвергаются всасыванию в подвздошной кишке. Около 10–15 % не всасываются, а проходят дальше в восходящую часть толстого кишечника. Там под действием нормальной кишечной флоры (в основном, бифидобактерий) происходит отщепление аминокислот (таурина и глицина) и первичные желчные кислоты превращаются во вторичные желчные кислоты. Если же этот процесс не происходит, то левая половина толстого кишечника подвергается мощному интоксикационному и канцерогенному процессу.
Желчные кислоты облегчают расщепление жиров, с одной стороны, с другой – активируют поджелудочные и кишечные ферменты (липазы). В слизистой оболочке кишечника желчные кислоты активируют процесс всасывания холестерина и имеют большое значение для формирования хиломикронов в клетках микроворсинок кишечника. Желчные кислоты являются одними из веществ, которые стимулируют мышечные сокращения кишечной трубки, то есть продвижение пищевого комка вместе с перемешанными с ним ферментами, соками и т. д. [4, 13, 24]. Следовательно, чем меньше желчных кислот в кишечнике, тем меньше, слабее сокращаются мышцы кишечной трубки, тем больше участков атонии в кишечнике.
Теперь опишем те изменения, которые происходят у работников газовой промышленности. Сероводород является разрушителем клеточных мембран любых клеток, и в первую очередь клеток печени, головного мозга, половых клеток, т. к. он нерастворим в воде, но растворим в жирах, которыми богаты эти органы. При хроническом воздействии сернистых соединений газа в клетках печени (гапатоцитах) происходит разрушение сначала внутренних структур клетки, затем повышается проницаемость клеточной мембраны, целостность клетки нарушается и в конечном итоге происходит смерть печеночной клетки [3]. Далее происходит следующее:
1. Кровь, которая должна пройти через печень, застаивается там и не подвергается очистке, в том числе и от токсичных вторичных желчных кислот.
2. При разрушении клеток печени происходит уменьшение синтеза собственного холестерина, т. к. печень является самым большим поставщиком холестерина и единственным органом, где происходит перевод холестерина в желчные кислоты и образование желчи.
3. Чтобы увеличить количество желчных кислот, организм увеличивает выработку холестерина, но при недостатке кислорода холестерин не может переводиться в желчные кислоты. С одной стороны, у работников газовой промышленности может быть повышен холестерин, что будет проявляться в плохом переваривании пищи, дисбиозе, хроническом недостатке кислорода и, конечно, риске развития атеросклероза и других заболеваний, связанных с гипоксией (недостатком кислорода). С другой стороны, холестерин может быть и пониженным, что говорит о серьезной дисфункции печени, что также сопровождается глубокой гипоксией.
4. При небольшом количестве желчных кислот кишечная трубка сокращается вяло, что способствует гнилостным процессам в кишечнике и развитию дисбиоза.
Кишечно-печеночная циркуляция холестерина, желчных кислот у здорового человекаПостоянство внутренней среды в кишечнике и его особенности у работников газовой промышленности
Важнейшим показателем нормального состояния желудочно-кишечного тракта человека является постоянство среды в каждом отделе. При этом общеизвестно резкое различие содержимого разных отделов и, в первую очередь, рядом расположенных. Так, в пищеводе среда нейтральная (pH=7), в желудке резко кислая (pH=2), а в 12-перстной кишке – щелочная (рН=8,5–9).
Значение высокой кислотности желудка не исчерпывается созданием необходимых условий для оптимального действия пепсина (главный фермент желудка), который вовсе не действует при нейтральной или щелочной среде. Кислая среда обеспечивает надежную дезинфекцию пищевого комка. Возникает вопрос: каким же образом поддерживается постоянство среды в каждом из отделов? Почему, несмотря на выхождение кислого желудочного содержимого в 12-перстную кишку, в ней сохраняется щелочная среда? Ответ очевиден – адекватная работа сфинктерного аппарата.
Во время выхождения порции желудочного содержимого в 12-перстную кишку происходит снижение pH. Сфинктер между желудком и 12-перстной кишкой (привратник) сразу закрывается, и перистальтические движения желудка ни к чему не приводят. Сфинктер закрыт до тех пор, пока pH не поднимается до 7,0 (нейтральная кислотность) и выше. Это происходит за счет желчи, которая является прямым антагонистом желудочного содержимого. Тогда привратник открывается и пропускает следующую порцию пищи. Вот почему полный срок эвакуации желудочного содержимого составляет 2,5–3 часа.
Далее жиры в 12-перстной кишке под действием перистальтики и желчных кислот намыливаются, как мыло, и на границе поверхности жир-вода вступают в действие поджелудочные ферменты, которые переводят липиды в триглицериды. Однако поджелудочные ферменты при оптимальном для них pH 8,0–9,0 (щелочная кислотность) могут переводить обратно глицериды в жиры. Чтобы этого не случилось, по ходу продвижения пищевого комка желчные кислоты опять вступают в действие и снижают pH до 6,0–7,0 (нейтральная кислотность). Это оптимальное значение для действия кишечных ферментов. В толстом же кишечнике основную роль играет микрофлора [9, 13, 19].
Сероводород оказывает наиболее токсическое свое воздействие в щелочной среле. В более кислой среде токсичность сероводорода уменьшается. Поэтому организм, чтобы защитить себя, повышает pH в желулке. При этом повышенная кислотность желудочного сока влияет на стенки желулка и может их повредить. При повреждении стенок желудка включается другой механизм защиты стенок желудка от кислого содержимого путем открытия клапана между желудком и 12-перстной кишкой. При этом не только щелочное содержимое 12-перстной кишки попадает в желудок, снижая кислотность желудочного сока, но и кислое содержимое желудка забрасывается в 12-перстную кишку. Пищевой комок в таких случаях не подвергается адекватной дезинфекции в желудке и не обрабатывается в достаточной степени щелочной средой 12-перстной кишки. Как следствие этого, пищевой комок не стимулирует поджелудочную железу и печень на открытие клапанов или стимулирует их неадекватно составу и объему пищи. Следовательно, небольшое количество желчи и малое содержание в ней желчных кислот приводит к недостаточному расщеплению жиров. Это опасно не только нарушением пищеварения.
Жиры являются основным источником энергии для организма, источником необходимых ненасыщенных жирных кислот, жирорастворимых витаминов, они экономят потребление многих витаминов и ускоряют их синтез бактериальной флорой кишечника, удерживают белковое и углеводное равновесие, увеличивают способность организма к напряжению, влияют на функцию эндокринных желез, на процесс свертывания крови, являются основным каркасным элементом клеточных мембран, а также влияют на многие другие процессы жизнедеятельности.
При недостаточном расщеплении жиров не происходит их адекватного усвоения. Жиров может всасываться недостаточно вследствие нехватки желчных кислот либо может всасываться избыток жиров вследствие команды из центральной нервной системы о недостатке липидов в клетке. При этом в последнем случае липиды все равно не попадают в клетку, так как недостаточно для этого расщеплены. А в крови липидов много. В этом случае неутилизированные жиры откладываются в жировую ткань. И, как правило, и в том и в другом случае в клетке наблюдается дефицит липидов.
Микрофлора кишечника человека и влияние сероводорода на ее состав
В одном грамме тонкокишечного содержимого здорового человека содержится от 5 до 10 тысяч основных видов кишечных микробов (колибактерии, бифидумбактерии, лактобациллы, энтерококки). Причем количество от 12-перстной кишки до подвздошной кишки возрастает. Точно в таком же объеме толстокишечного содержимого находится от 30 до 40 миллиардов микробов. Помимо указанных выше основных представителей микрофлоры, в толстой кишке имеется до 240 видов микроорганизмов.
Ферменты микроорганизмов толстой кишки вызывают окончательное расщепление углеводов, белков и жиров, в результате чего образуются либо полезные вещества, либо токсические. Это зависит от состава микрофлоры. Нормальная кишечная микрофлора образует полезные вещества, патогенная микрофлора образует большое количество газов (углекислый газ, метан, сероводород), токсические вещества (фенол, скатол, индол, крезол и другие). Это приводит к повышению внутрибрюшного давления, плохому перевариванию пищи, возникает чувство распирания живота, изжога. Токсическое действие этих веществ может вызывать головные и суставные боли, плохое самочувствие. Подавляющее большинство представителей нормальной микрофлоры составляют бифидумбактерии и колибактерии. При этом они могут продуцировать антибактериальные вещества против патогенных микробов.