Однако священник-биолог заметил, что, перед тем как разделиться, хромосомы-близнецы иногда взаимодействуют между собой, обвивая друг друга кончиками. Почему так происходит, он не знал. Морган предположил, что в процессе такого взаимодействия кончики отрываются и меняются местами[7]. Это объясняло, почему сцепленные признаки иногда разделяются: хромосома разрывается где-то между двумя генами и разделяет их. Морган продолжал рассуждать в правильном направлении и пришел к мысли о том, что признаки, разделяющиеся в 4 % случаев, вероятно, располагаются в хромосоме дальше друг от друга, чем те признаки, которые разделяются в 2 % случаев, поскольку дополнительное расстояние между первой парой увеличивает вероятность разрыва на этом участке.
Догадка Моргана оказалась верной, и с помощью идей Стертеванта и Бриджеса в течение последующих нескольких лет в «мушиной комнате» была в общих чертах описана новая модель наследственности – та самая, благодаря которой команда Моргана вошла в историю науки. Согласно этой модели, все признаки контролируются генами, которые располагаются в определенных местах хромосом, следуя друг за другом, подобно жемчужинам в ожерелье. Поскольку живые существа наследуют одну копию каждой хромосомы от каждого родителя, хромосомы передают наследственные признаки от родителя к ребенку. При кроссинговере[8] (и мутации) хромосомы немного изменяются, благодаря чему каждая живая особь является уникальной. Тем не менее хромосомы (и гены) большей частью остаются в неизменном состоянии, что объясняет наличие общих признаков у членов одной семьи. Вот он – первый важнейший шаг к пониманию того, как работает наследственность.
По правде говоря, в лаборатории Моргана была разработана лишь малая часть этой теории, которую, как мозаику, по кусочкам сложили биологи из разных стран. Однако именно команда Моргана окончательно объединила эти разрозненные идеи, а мушки-дрозофилы обеспечили их неопровержимое экспериментальное подтверждение. По крайней мере, вряд ли кто-либо посмел бы отрицать сцепление признаков с полом, когда на полке у Моргана жужжало десять тысяч мутантов, среди которых не было ни единой самки.
Понятное дело, что, получив признание за объединение этих теорий, Морган не сделал ничего, чтобы примирить их с дарвиновской теорией естественного отбора. Несмотря на то, что сама работа, проводимая в «мушиной комнате», подталкивала ученого к этому шагу, Морган в который раз «позаимствовал» идею у ассистентов – в том числе у того, кто не отнесся к этому так же покорно, как Бриджес и Стертевант.
Герман Мёллер начал время от времени интересоваться «мушиной комнатой» с 1910 года. На его попечении была престарелая мать, поэтому жизнь его была суетливой: он работал курьером в гостиницах и банках, по ночам обучал иммигрантов английскому языку, наспех перекусывая бутербродами, пока добирался на метро с одной работы на другую. Каким-то образом Мёллер все же нашел время, чтобы подружиться с писателем Теодором Драйзером в Гринвич-Виллидж, увлечься социализмом и регулярно ездить за двести миль в Корнелльский университет ради степени магистра. Однако, как бы ни был он изнурен, свой единственный свободный день – четверг – Мёллер отводил на то, чтобы заглянуть к Моргану и «мушиным мальчикам» и обменяться мнениями о генетике. Благодаря незаурядному интеллекту, Мёллер вскоре стал одним из самых активных участников этих научных посиделок. В 1912 году Мёллер окончил Корнелльский университет, и Морган выделил ему рабочее место в «мушиной комнате». Проблема заключалась в том, что Морган отказался платить Мёллеру, так что рабочий режим молодого энтузиаста остался прежним. Вскоре у него случился нервный срыв.
С тех пор (и на протяжении последующих десятилетий) Мёллер негодовал по поводу своего положения в «мушиной комнате». Его раздражало то, что Морган открыто благоволил буржуа Стертеванту и перекладывал черную работу – например, подготовку бананов – на плечи «пролетария» Бриджеса. Его раздражало то, что и Бриджес, и Стертевант получали плату за проведение экспериментов на основе его, Мёллера, идей, в то время как ему приходилось бегать по всему Нью-Йорку, чтобы заработать мелочь. Он негодовал по поводу того, что Морган рассматривал «мушиную комнату» как клуб для избранных и иногда заставлял друзей Мёллера работать в коридоре. Но больше всего Мёллера возмущало то, что Морган не обращал внимания на его заслуги. Отчасти виной тому была медлительность Мёллера в том, что Морган ценил превыше всего – в проведении хитроумных экспериментов, которые он (Мёллер) сам и придумал. В действительности Мёллер едва ли мог найти худшего наставника, чем Морган. При всех своих симпатиях к социализму Мёллер ценил интеллектуальную собственность и чувствовал, что в «мушиной комнате», с ее свободным и коммунальным укладом, его талант эксплуатировался и оставался без внимания. И уж точно Мёллер не мог претендовать на роль мистера Конгениальность. Он бестактно и нудно критиковал Моргана, Бриджеса и Стертеванта и воспринимал как личное оскорбление все, кроме чистой логики. Больше всего Мёллера задело небрежное принижение Морганом роли естественного отбора в процессе эволюции, которую сам Мёллер считал основой биологии.
Несмотря на личные конфликты, инициатором которых был он сам, Мёллер незаметно вел «мушиную» группу вперед, к большим достижениям. После 1911 года Морган едва ли внес какой-либо вклад в формирующуюся теорию наследования, в то время как Мёллер, Бриджес и Стертевант продолжали совершать фундаментальные открытия. К сожалению, сегодня трудно разобраться, кто что открыл, и не только из-за постоянного обмена идеями. Морган и Мёллер часто набрасывали мысли на разрозненных клочках бумаги, при этом Морган каждые пять лет очищал свой шкаф от документов – вероятно, по причине малых размеров лаборатории. Мёллер хранил все документы, однако много лет спустя еще один коллега, с которым Мёллер враждовал, выбросил его записи, пока Мёллер работал за рубежом. Кроме того, Морган (как и собратья Менделя по монастырю) уничтожил архив Бриджеса, когда адепт свободной любви скончался от сердечного приступа 1938 году. Выяснилось, что Бриджес был бабником, и когда Морган нашел подробные записи о его похождениях, он счел благоразумным сжечь все бумаги и сохранить репутацию генетики, как и многих обманутых мужей-генетиков, незапятнанной.
Как бы то ни было, историки располагают достоверными данными о некоторых открытиях. Так, все «мушиные мальчики» участвовали в выявлении группы признаков, наследуемых вместе. Более того, они обнаружили у мух четыре отдельные группы признаков, что в точности соответствовало числу пар хромосом. Этот факт явился мощным толчком для развития теории хромосом, поскольку доказывал, что каждая хромосома содержит множество генов.
Опираясь на эти данные, Стертевант вывел понятие сцепления генов и хромосом. Согласно догадке Моргана, гены, которые разделяются в 2 % случаев, должны располагаться ближе друг к другу в хромосомах, чем гены, которые разделяются в 4 % случаев. Однажды вечером, размышляя над этим предположением, Стертевант понял, что проценты можно перевести в реальные расстояния. Так, гены, которые разделяются в 2 % случаев, должны располагаться в два раза ближе друг к другу, чем другие пары; эта же логика работала и для сцеплений с другими процентами. Забросив университетские задания и засев на всю ночь за работу, этот девятнадцатилетний юноша набросал к утру первую схематическую карту хромосомы. Когда Мёллер увидел карту, он «буквально подскочил от волнения», после чего указал, как ее можно усовершенствовать.
Бриджес обнаружил явление «нерасхождения» – редкие случаи, когда хромосомы не полностью расходятся после кроссинговера и сплетения плеч (в результате чего возникает избыток генетического материала, что может привести к таким проблемам, как синдром Дауна). Помимо научных открытий, Бриджес, мастер на все руки, провел индустриализацию «мушиной комнаты». Взамен кропотливого отделения мух путем переворачивания одной за другой бутылок вверх дном, Бриджес изобрел пульверизатор, с помощью которого мух можно было оглушать, оросив их крошечными дозами эфира. Он также заменил лупы бинокулярными микроскопами и ввел в обиход белые фарфоровые тарелки и остроконечные кисти, чтобы было проще рассматривать мух и проводить с ними различные манипуляции. Кроме того, он заменил гниющие бананы на питательную смесь из патоки и кукурузной муки и соорудил шкафы с регулируемой атмосферой, так что мушки, плохо переносящие падение температуры, могли размножаться зимой и летом. Он даже построил «мушиный морг», чтобы послужившие науке мушки уходили в небытие достойно. Не все нововведения ассистента были приняты Морганом – так, он продолжал прихлопывать мух везде, где бы они ни приземлились, несмотря на наличие морга. Однако Бриджес знал, что мутанты появляются крайне редко, и когда это произойдет, его биологическая фабрика позволит каждому из них благоденствовать и производить миллионы потомков[9].
Мёллер был постоянным поставщиком озарений и идей, рассеивая противоречия и подпирая шаткие теории непоколебимой логикой. И хотя ему приходилось до хрипоты спорить с Морганом, в конце концов, ему удалось заставить старшего ученого увидеть, что гены, мутации и естественный отбор работают в тесном сотрудничестве. Вот что Мёллер (среди прочих) говорил об этом: гены наделяют существ признаками, а мутации генов изменяют признаки, создавая существ, различающихся по цвету, высоте, скорости и т. д. Однако в противовес де Фризу, который считал мутации значительными событиями, в результате которых появляются «спорты» и «внезапные виды», большинство мутаций изменяют существ совсем незначительно. Кроме того, естественный отбор позволяет наиболее приспосабливаемым из этих существ выжить и чаще производить потомство. Тут в игру вступает кроссинговер. Происходит перетасовка генов между хромосомами, в результате чего новые варианты генов собираются воедино, поставляя на нужды естественного отбора еще более разнообразный рабочий материал. (Кроссинговер имеет такое большое значение, что некоторые современные ученые считают, что сперматозоиды и яйцеклетки «отказываются» формироваться до тех пор, пока кроссинговер хромосом не произойдет минимальное количество раз.)
Мёллер также помог расширить представления ученых о потенциале генов. Более того, он утверждал, что на признаках, подобных тем, что изучались Менделем (двойные признаки, контролируемые одним геном), история не заканчивается. Многие важные признаки контролируются несколькими генами и даже десятками генов. Таким образом, эти признаки проявятся в разной степени, в зависимости от того, какие именно гены унаследует та или иная особь. Некоторые гены также могут «усилить» или «ослабить» другие; подобные крещендо и диминуэндо, в свою очередь, производят еще более тонкие градации. Наконец, самым важным является то, что благодаря дискретности и стабильности генов выгодные мутации не будут разбавляться между поколениями. Такой ген остается в целости и сохранности, а значит, более совершенные родители могут скрещиваться с менее совершенными видами и при этом передавать этот ген дальше.
Мёллер считал, что дарвинизм и менделизм прекрасно дополняли и усиливали друг друга. И когда он, наконец, убедил в этом Моргана, Морган стал дарвинистом. Легко смеяться над этим очередным обращением Моргана «в новую веру» – кроме того, в более поздних работах Морган продолжает ставить генетику выше естественного отбора. Тем не менее одобрение Моргана имело значение в более широком смысле. В то время в биологии господствовали высокопарные теории (включая теорию Дарвина), и благодаря Моргану наука сохраняла под собой твердую почву, ведь этот авторитетный ученый оставался сторонником веских доказательств. Биологи знали: если какая-то теория сумела убедить даже Томаса Ханта Моргана, значит, она чего-нибудь, да стоит. Более того, даже Мёллер признавал огромное влияние Моргана на развитие науки. «Мы не должны забывать, – однажды заметил он, – о роли руководящей личности Моргана, который заразил всех остальных своим собственным примером, своей неутомимой деятельностью, своей рассудительностью, веселостью и бодростью духа». В конце концов, своим дружелюбием Морган сделал то, что было неподвластно блестящей иронии Мёллера: убедил генетиков критически отнестись к собственным предубеждениям против Дарвина и серьезно обдумать обоснованность предложенного синтеза теорий Дарвина и Менделя – естественного отбора и генетики.
Многие ученые действительно увлеклись работой команды Моргана в 1920-х годах, поставляя непритязательных плодовых мушек в лаборатории по всему миру. Очень скоро дрозофила стала «стандартным животным» в генетике, позволяя ученым в любой точке земного шара сравнивать открытия в равных условиях. Руководствуясь такими стандартами работы, в 1930-х и 1940-х годах новое поколение биологов с математическим мышлением приступило к исследованиям распространения мутаций в естественных популяциях вне лаборатории. В ходе этих исследований выяснилось, что если ген дает некоторым существам хотя бы небольшое преимущество для выживания, оно может (при условии достаточно длительного сохранения) подтолкнуть вид к развитию в новых направлениях. Более того, большинство изменений будет проходить крошечными шажками – в точности, как утверждал Дарвин. Если работа «мушиных мальчиков», в конце концов, показала, как примирить Менделя с Дарвином, то биологи более позднего времени представили обоснования не менее веские, чем евклидово доказательство. Дарвин как-то посетовал, что математика ему «отвратительна» и что любая задача, на шаг отходящая от простейших вычислений, для него непосильна. В действительности именно математика стала опорой для теории Дарвина и повторно спасла ее репутацию[10]. Таким образом, так называемое затмение дарвинизма, пришедшееся на начало 1900-х годов, ознаменовало собой период мрака и путаницы в науке, однако он в скором времени завершился.
Помимо научных открытий, распространение дрозофил по всему миру имело еще одно важное последствие, во многом благодаря «веселости» Моргана. Дело в то, что в генетике названия большинства генов представляют собой уродливые сокращения, за которыми стоят чудовищно нелепые слова, значение которых может понять человек шесть во всем мире. Так при обсуждении, скажем, гена ALOX12B зачастую нет смысла расшифровывать его название (арахидонат 12-липоксигеназа, тип 12R), поскольку, как нам кажется, это не столько проясняет смысл, сколько сбивает с толку (чтобы не напрягать читателей, отныне я буду указывать лишь сокращенные названия генов и делать вид, что за ними ничего не стоит). В отличие от устрашающе сложных названий генов, названия хромосом отличаются поразительной банальностью. Планеты были названы в честь богов, химические элементы – в честь мифов, героев и великих городов. Хромосомы получили названия, по оригинальности сопоставимые с размерами обуви. Хромосома один – самая длинная, хромосома два – вторая по длине (зевок) и так далее. На самом деле 21-я человеческая хромосома короче, чем 22-я, но к тому времени, как ученые обнаружили это, 21-я хромосома успела прославиться, поскольку лишняя 21-я хромосома является причиной синдрома Дауна. И в самом деле, с такими скучными названиями не стоило и бороться, пытаясь что-то изменить.
Ученые, изучавшие дрозофил (да благословит их Господь!), были людьми исключительными. Команда Моргана выбирала для мутантных генов достаточно иллюстративные названия: например, «пятнистый», «бисерный», «недоразвитый», «белый» и «аномальный». Традиция эта жива до сих пор, и названия большинства генов дрозофилы лишены и намека на научную сложность. Гены плодовой мушки носят такие названия, как «граучо», «смурф», «страх близости», «затерянный в космосе», «потеря обоняния», «бледная колбаса», «триббл» (расплодившиеся пушистые существа шаровидной формы из научно-фантастического сериала «Звездный путь»), «туфф» (в честь миссис Туфф, персонажа из сказки Беатрикс Поттер). При мутации гена «броненосец» плодовые мушки рождаются с панцирным наружным скелетом. Ген «болван» делает дрозофил глупыми. «Тюдор» делает самцов бесплодными (как это было с детьми Генриха VIII). «Клеопатра» может убить мушку при взаимодействии с другим геном, «змеей». «Дешевое свидание» делает мушек особенно восприимчивыми к алкоголю. Половая жизнь дрозофил, кажется, особенно вдохновляет на создание изощренных названий. У мутантов «Кена и Барби» нет наружных половых органов. При наличии у самца мутантного гена coitus interruptus (с лат. «прерванный половой акт») соитие длится всего десять минут (норма составляет двадцать минут), в то время как мутантный ген «стопор» не позволяет мушкам физически расцепиться после полового акта. Что до самок, мушки, имеющие мутантный ген «неудовлетворенность», вообще не вступают в половые контакты – всю свою энергию они тратят на то, чтобы отпугивать ухажеров хлопаньем крыльев.
К счастью, эта причуда с названиями генов дрозофил является источником вдохновения для ученых, работающих в других областях генетики. Ген, наделяющий млекопитающих лишними сосками, получил название «скараманга», по имени злодея из фильма о Джеймсе Бонде, имевшего такой же изъян. Ген, который удаляет эритроциты из кровообращения у рыб, назвали «влад цепеш» в честь Влада Цепеша, исторического прототипа Дракулы. Бэкроним для гена мышей «эритроидный миелоидный онтогенетический фактор ПОК» – «покемон» – чуть было не спровоцировал судебный иск против его авторов: данный ген (в настоящее время известный – увы! – как ZBTB7) способствует развитию рака, а адвокаты медиаимперии «Покемон» вовсе не хотели, чтобы их милых маленьких карманных монстров ассоциировали с опухолями. Однако пальму первенства за самое причудливое название, на наш взгляд, следует присудить гену мучного хрущака – «медее» – названному в честь героини древнегреческих мифов, совершившей детоубийство. «Медея» отвечает за белок с любопытным свойством: это и яд, и противоядие одновременно. Так, если у матери есть этот ген, но он не передается эмбриону, ее тело убивает плод – и она ничего не может с этим поделать. Если у плода есть этот ген, он / она вырабатывает противоядие и остается жить. («Медея» – «эгоистичный генетический элемент», ген, который, прежде всего, требует собственного распространения, даже если наносит ущерб особи-носителю.) Если опустить весь этот ужас, следует отметить, что это название как никакое другое подходит научной традиции Колумбийского университета, где исследовались дрозофилы. И вполне логично, что наиболее важная клиническая работа над «медеей», которая привела к изобретению весьма эффективных инсектицидов, началась после того, как ученые внедрили этот ген в организм дрозофилы для дальнейшего изучения.