Но я могу предложить более оригинальный ответ:
Я верю в созидательную силу скуки. Или, если выразить это в форме вопроса Edge: я верю, что как бы мы ни перекармливали нашу молодежь изощренными интерактивными развлечениями, очень скоро она вырвется на свободу и придумает собственные развлечения. Я знаю по собственному опыту: в 10 лет именно скука заставила меня заинтересоваться математикой. Но пока этого не произошло, я не могу этого доказать. Возможно, уже в следующем поколении дети будут развлекаться так, как мы не могли и вообразить. Я верю, что человек по своей природе обладает большим запасом здравого смысла.
Кит Девлин
КИТ ДЕВЛИН — математик; исполнительный директор Центра по изучению языка и информации Стэнфордского университета и консультирующий профессор на факультете математики. Его исследования посвящены разработке систем информации/суждений для анализа интеллекта. Автор нескольких книг, в том числе «Математический инстинкт: почему вы гениальный математик (наряду с омарами, птицами, кошками и собаками)».
Прежде чем ответить на вопрос проекта Edge, давайте определим, что мы называем доказательствами. (Математики любят с самого начала точно определять, о чем пойдет речь, и эта склонность к педантизму иногда сводит с ума наших коллег — физиков и инженеров.) Например, вслед за Декартом, я могу доказать самому себе, что существую, но вряд ли смогу доказать это кому-нибудь другому. Даже те, кто хорошо меня знает, могут предположить (хотя это маловероятно), что я просто плод их воображения. Если вы хотите от доказательства железобетонной твердости, то нет почти ничего, кроме нашего собственного существования (что бы это ни означало и в каком виде мы бы ни существовали), что мы можем доказать самим себе. И нет вообще ничего, что мы можем доказать другим.
Принято считать, что математическое доказательство — самая надежная форма доказательства из всех возможных. В те дни, когда Евклид писал «Начала», свой великий труд по геометрии, это было действительно так — по крайней мере, так казалось. Но многие доказательства геометрических теорем, которые привел Евклид, позже оказались неверными. В конце XIX века Дэвид Гилберт уточнил многие из них — хотя математики веками верили в них и объясняли их своим студентам. Так что даже в сфере простейших доказательств геометрии иногда трудно отличить правду от лжи.
Если рассмотреть некоторые доказательства, полученные в последние 50 лет, с помощью невероятно сложных умозаключений, иногда занимающих больше сотни страниц, уверенности становится еще меньше. Почти все математики (в том числе и я) верят, что Эндрю Уайлс доказал последнюю теорему Ферма в 1994 году, но так ли это? Я в это верю, потому что меня убедили эксперты.
В конце 2002 года российский математик Г. Перельман опубликовал в Интернете схему доказательства гипотезы Пуанкаре, знаменитой топологической проблемы, которую никто не может разгадать около сотни лет. Математики изучают доказательство Перельмана уже три года, но до сих пор не уверены в его правильности (они думают, что «вероятно, оно правильно»).
Или возьмем Томаса Хейлса. В 1998 году он предложил доказательства выдвинутой 360 лет назад гипотезы Иоганна Кеплера о том, что самый эффективный способ упаковать шары одинакового размера (например, пушечные ядра, с которых и началась эта гипотеза) — сложить их в форме пирамиды, как продавцы складывают апельсины на прилавке. Хейлс до сих пор не знает, примет ли математическое сообщество его доказательства. Комитет мировых экспертов изучал его доказательство (частично при помощи компьютера) в течение пяти лет. Весной 2003 года эксперты заявили, что не нашли никаких серьезных ошибок в его доказательстве, но все же не уверены в его правильности.
Но если само понятие доказательств настолько туманно даже в математике, ответить на ежегодный вопрос проекта Edge не так уж легко. Лучшее, что можно сделать, — это придумать что-нибудь, во что мы верим, но не можем доказать, просто ради собственного удовольствия. Другие могут соглашаться или не соглашаться с нами, в зависимости от того, насколько они доверяют нам в сфере науки, философии, какой-то другой области, на основании нашей репутации и наших предыдущих работ. Даже готовность математиков прошлого принять теорему Гёделя о неполноте (которая позволила бы мне в ответ на вопрос Edge сказать, что я верю, что в арифметике нет внутренних противоречий) уже невозможна. Теорема Гёделя показала: невозможно доказать, что теория, основанная на аксиомах, например, арифметика, свободна от противоречий, если мы пытаемся сделать это в рамках этой самой теории. Но это не значит, что этого нельзя доказать в рамках более обширной теории. На самом деле в стандартной теории, основанной на наборе аксиом, можно доказать, что арифметика лишена противоречий. Лично я верю этим доказательствам. Для меня как математика непротиворечивость арифметики полностью доказана, к моему полному удовольствию.
Поэтому, чтобы ответить на вопрос проекта Edge, нужно относиться к доказательствам с точки зрения здравого смысла. Тогда доказательства — это просто аргументы, способные убедить разумного, профессионального, скептичного, опытного эксперта в соответствующей области. В этом духе я могу перечислить достаточно узкие математические проблемы, которые считаю верными, но не могу этого доказать, начиная со знаменитой гипотезы Римана. Но я предпочитаю использовать свой математический взгляд, чтобы указать на неопределенность самого понятия «доказательство». Я верю (хотя и не могу этого доказать), что могу доказать свою точку зрения.
Фримен Дайсон
ФРИМЕН ДАЙСОН — почетный профессор физики Института последипломного образования Принстонского университета. Автор нескольких научно-популярных книг, в том числе «Воображаемые миры» и «Солнце, геном и Интернет».
Я — математик, и поэтому мой ответ на этот вопрос будет точным. Благодаря Курту Гёделю мы знаем, что существуют математические утверждения, которые невозможно доказать. Но мне этого мало. Мне нужно утверждение, достаточно истинное, недоказуемое и простое, чтобы его смогли понять не только математики, но и обычные люди. Вот оно.
Возьмем геометрическую прогрессию со знаменателем 2. Это ряд чисел: 2, 4, 8, 16, 32, 64, 128 и т.д. Назовем их «числами первого ряда». Возьмем геометрическую прогрессию со знаменателем 5: 5, 25, 125, 625 и т.д. Назовем их «числами второго ряда». Можно взять любое число, например, 131072 (оно входит в первый ряд чисел), и записать его в обратном порядке: 270 131. Мое утверждение таково: число, обратное числу из первого ряда, никогда не принадлежит к числам из второго ряда.
Кажется, что числа первого ряда возникают в случайном порядке, безо всякой системы. Если бы число, обратное числу из первого ряда, принадлежало к числам из второго ряда, это было бы невероятное совпадение, и вероятность этого тем меньше, чем больше числа. Если предположить, что эти числа появляются случайно, то вероятность совпадения для любого числа из первого ряда, которое больше миллиарда, меньше одной миллиардной. Легко проверить, что этого не происходит для чисел из первого ряда, которые меньше миллиарда. Поэтому вероятность, что это когда-нибудь произойдет, меньше одной миллиардной. Вот почему я верю, что это утверждение истинно.
Но предположение о том, что числа из первого ряда появляются случайно, также подразумевает, что это утверждение недоказуемо. Любые доказательства этого утверждения должны быть основаны на каком-то неслучайном, закономерном свойстве этих чисел. Предположение о случайности означает, что это утверждение истинно, просто потому что шансы говорят в его пользу. Но это невозможно доказать, так как нет обоснованных математических причин, по которым это может быть истинным. (Замечание для экспертов: это доказательство неприменимо к геометрической прогрессии со знаменателем 3. В этом случае утверждение легко доказать, потому что число, обратное числу, делящемуся на 3, тоже делится на 3. Делимость на 3 — закономерное свойство чисел.)
Несложно найти другие примеры утверждений, которые, скорее всего, истинны, но недоказуемы. Главное — найти бесконечную последовательность событий, каждое из которых может произойти случайно, но с небольшой суммарной вероятностью того, что хотя бы одно из них произойдет. Тогда утверждение о том, что ни одно из событий никогда не произойдет, скорее всего, будет истинно, но недоказуемо.
Ребекка Гольдштейн
РЕБЕККА ГОЛЬДШТЕЙН — писатель и профессор философии колледжа Тринити в Хартфорде, Конн. Автор книги «Неполнота: доказательство и парадокс Курта Гёделя» и шести научнофантастических романов, в том числе «Вопрос об отношении души и тела» и «Свойства света: роман о любви, предательстве и квантовой физике».
Я верю, что научные теории помогают выйти — каким-то непостижимым образом — за рамки наблюдаемого физического мира и проникнуть в суть природы. Теоретические аспекты научных теорий — выраженные в терминах, не связанных с непосредственным наблюдением — на самом деле, как мне кажется, невозможно превратить в наблюдения. Но научные теории не являются алгоритмическими «черными ящиками», куда мы складываем наблюдения, а потом вытаскиваем свои прогнозы. Я верю, что теоретические аспекты теорий содержат в себе описания, и они истинны (или ложны) в том же прозаическом смысле, в котором истинны (или ложны) наблюдения, на которых они основаны. Они истинны в том случае (и лишь в том случае), если соответствуют реальности.
Проникнуть в суть природы, которую невозможно наблюдать, можно посредством абстрактных математических вычислений. Во многом это и делает науку таинственной — достаточно таинственной, чтобы ее методы логично и последовательно (даже если при этом неубедительно, как минимум, для меня) опровергали радикальные антиреалисты. Трудно объяснить, как науке удается делать то, что она делает — и особенно трудно объяснить, как квантовая механика описывает ненаблюдаемую реальность. Ненаблюдаемые аспекты природы, о которых мы можем знать, должны также поддаваться математическому выражению и быть адекватно связаны с наблюдениями. Титаны XVII века, например, Галилей и Ньютон, выяснили, как сочетать математику с эмпирикой. Они не знали, сработает это или нет, позволит ли открыть новые тайны природы, как это делала аристотелевская телеологическая методология, которую должна была заменить новая парадигма. Чтобы оправдать свою методологию, они сделали множество предположений о математической природе мира и его фундаментальном соответствии нашим когнитивным способностям (они считали, что это соответствие — свидетельство милосердия Господа по отношению к нам).
Также я верю, что не все свойства природы поддаются математическому выражению (это совершенно естественно; подобным образом можно выразить только некоторые, особые свойства). Некоторые стороны природы мы никогда не постигнем с помощью науки. Поэтому наши научные теории — как и формальные математические системы (как подтвердил Гёдель) — всегда останутся неполными. Эту неполноту демонстрирует сам факт сознания — аспекта материального мира, который нам известен, но не потому, что нам его открыла наука.
Стюарт Кауфман
СТЮАРТ КАУФМАН — приглашенный профессор Института Санта-Фе. Ведет исследования в сфере клеточной биологии и психологии в Университете Нью-Мексико. Автор книг «Происхождение порядка» и «Исследования».
Существует ли где-то в космосе четвертый закон термодинамики или нечто подобное, связанное с самоорганизованными неравновесными системами, такими как биосфера?
Мне хочется думать, что такой закон существует. Давайте посчитаем: количество возможных протеинов, из которых состоят все 200 аминокислот, составляет 20200, то есть 10260. В известной нам Вселенной элементарных частиц около 1080. Предположим, что на уровне микросекунд Вселенная занята исключительно производством протеинов для 200 аминокислот. Оказывается, что понадобилось бы огромное количество повторений истории Вселенной, чтобы создать все возможные протеины. Создавая тела с более сложной структурой, чем атомы — например, такие простые органические молекулы, как протеины (не говоря уже о биологических видах, автомобилях или опере), — Вселенная следует уникальной траектории (забудем на время о квантовой механике). На более или менее простых уровнях Вселенная совершенно не эргодическая, то есть не повторяет себя.
Теперь давайте поговорим о «смежных возможностях» — об объектах, находящихся в двух шагах от тех, которые существуют сейчас. Для систем, создающих химические реакции, смежные возможности для набора актуальных (уже существующих) компонентов — это набор других компонентов, которые могут быть созданы в ходе единственной химической реакции с участием компонентов актуального набора. Биосфера Земли создавала свою молекулярную смежную возможность около 4 миллиардов лет.
Возможно, до появления жизни на Земле существовало несколько сотен органически-молекулярных видов; сейчас их больше триллиона. Мы не знаем, какие законы управляют смежной возможностью в этом неэргодическом процессе. Я надеюсь, что один из этих законов состоит в том, что биосферы, существующие во Вселенной, расширяются с максимальной скоростью, при этом поддерживая разнообразие уже существующих видов. Иначе этот закон можно сформулировать так: разнообразие вещей, которые могут произойти в будущем, растет в среднем с максимальной скоростью.
Леонард Сасскинд
ЛЕОНАРД САССКИНД — профессор теоретической физики Стэнфордского университета. Автор книг «Введение в теорию черных дыр», «Информация и революция теории струн: голографическая вселенная» (в соавторстве с Джеймсом Линдсеем).
(Беседа со студентом-тугодумом)
Студент: Здравствуйте, профессор. У меня проблема. Я решил провести небольшой вероятностный эксперимент — знаете, подбрасывание монетки — и проверить то, чему вы нас учили. Но у меня ничего не вышло.
Профессор: Что ж, я рад, что вы проявили интерес. Что же вы сделали?
Студент: Я подбросил монетку 1000 раз. Помните, вы говорили, что вероятность того, что выпадет «орел» — одна вторая. Я подсчитал, что если подбросить монетку 1000 раз, то «орел» должен выпасть 500 раз. Но он выпал 513 раз. Почему?
Профессор: Вы забыли о допустимой погрешности.
Если подбросить монетку какое-то число раз, допустимая погрешность будет равняться квадратному корню от количества бросков. Для 1000 бросков допустимая погрешность около 30. Так что вы получили совершенно предсказуемый результат.
Студент: О, теперь я понял! Каждый раз, когда я подброшу монетку 1000 раз, «орел» выпадет от 470 до 530 раз. Каждый раз! Здорово, теперь я уверен, что это факт!
Профессор: Нет-нет! Это значит, что «орел», вероятно, выпадет от 470 до 530 раз.
Студент: Вы хотите сказать, что «орел» может выпасть 200 раз? Или 850 раз? Или выпадать все время?
Профессор: Вероятно, нет.
Студент: Может быть, проблема в том, что я сделал недостаточно бросков? Может быть, мне нужно пойти домой и подбросить монетку миллион раз? Может быть, тогда результат будет лучше?
Профессор: Вероятно, нет.
Студент: Профессор, пожалуйста, скажите мне что-нибудь, в чем я могу быть уверен. Но вы все время твердите свое «вероятно». Вы можете мне объяснить, что такое вероятность, но без слова «вероятно»?
Профессор: Гм-гм. Я попробую. Это значит, что я буду удивлен, если «орел» выпадет чаще, чем предполагает допустимая погрешность.
Студент: О господи! Вы хотите сказать, что все, что вы рассказывали нам о статистической механике, квантовой механике и математической вероятности, — все это значит лишь то, что вы будете удивлены, если оно не сработает?
Профессор: Э-э-э...
Если я подброшу монетку миллион раз, то, совершенно точно, «орел» миллион раз не выпадет. Я не азартен, но я настолько в этом уверен, что, не задумываясь, поставил бы на это свою жизнь или свою душу. Да что там душу, я поставил бы на это свою зарплату за целый год. Я абсолютно убежден, что законы больших чисел — то есть теория вероятности — сработают и не дадут меня в обиду. На них основана вся наука. Но я не могу этого доказать, и на самом деле понятия не имею, почему они работают. Может быть, именно поэтому Эйнштейн говорил, что Бог не играет в кости. Вероятно, все-таки играет.
Дональд Хоффман
ДОНАЛЬД ХОФФМАН — профессор когнитивных наук, философии, информационных и компьютерных наук университета Калифорнии, Ирвин. Автор книги «Зрительный интеллект: как мы создаем то, что видим».
Я верю, что не существует ничего, кроме сознания и его содержания. Пространство-время, материя и поля никогда не были фундаментальными свойствами Вселенной, а всегда были среди самых скромных идей нашего сознания; без него их не существует.
Мир нашего повседневного опыта — мир столов, стульев, звезд и людей, мир форм, запахов, ощущений и звуков — это присущий исключительно нашему биологическому виду интерфейс между нами и гораздо более сложной реальностью. И главное качество этого интерфейса — сознание.
Вряд ли содержание интерфейса каким-то образом похоже на эту реальность; чтобы интерфейс был полезным, он и не должен быть на нее похож. Интерфейс (например, интерфейс компьютера Шшсктв) должен быть удобным и простым в использовании. Мы «кликаем» на иконки, потому что это быстрее и точнее, чем просматривать мегабайты программного обеспечения или переключать напряжение в электроцепях. Требования эволюции диктуют, чтобы интерфейс, свойственный нашему виду — мир нашего повседневного опыта, — сам был радикальным упрощением. Его задача — не исчерпывающее описание истины, а обеспечение нашего выживания.