Самки, скажем, водяной полевки, которые рождают совсем немного детенышей, оказываются в явном проигрыше по сравнению с самками плодовитыми. Их вклад в последующее поколение полевок окажется меньше, то есть частота «гена низкой плодовитости» будет все время снижаться. Но очень большой выводок трудно прокормить, детеныши будут мельче и слабее, они будут чаще гибнуть, и вклад очень плодовитых самок окажется тоже невелик. В наиболее выгодном положении окажутся самки с плодовитостью средней. Это касается любого признака. Та же шерсть, если она очень редкая, то это плохо – холодно. Но слишком длинная и густая шерсть тоже порой ничего хорошего, хотя бы потому, что она будет за все цепляться.
Водяная полевка
Первым, насколько известно, сообщил о «трамвайном законе» канадский орнитолог Гораций Бумпус в конце XIX столетия. Как-то в жесточайший мороз он подобрал и притащил домой целую стаю полумертвых воробьев. Выжило из них меньше половины. Из чистого любопытства он измерил у всех воробьев длину тела, длину крыла, цевки, хвоста и клюва. Это стандартные промеры, которые входят в описание любого вида птиц. К собственному удивлению, он обнаружил, что выжившие воробьи имели показатели, близкие к средним для этого вида. А у погибших эти признаки широко варьировали.
Череп совы: 1 – глазницы; 2 – камера среднего и внутреннего уха; 3 – мозговая коробка
Ну а, скажем, острота зрения или скорость бега? Вроде бы, чем лучше вы видите и чем быстрей бегаете, тем лучше. Значит, есть такие признаки, которые отбор всегда будет двигать только в одну сторону? Не все так просто. Та же острота зрения в первую очередь требует увеличения размеров глаза. Хотя глаза орлов, сов или кошек не кажутся такими уж большими, но на самом деле это разрез век у них небольшой. Само же глазное яблоко у остроглазых животных огромное. А чем больше глазное яблоко, тем меньше развиты челюстные мышцы. Для них просто не остается места. И располагаться им приходится «неудобно», чтобы дать место глазу. Значит, чем лучше зрение – тем слабее челюсти.
Отбор уничтожает не только анатомические, так сказать, крайности. Он не любит крайностей и в поведении. Хорошо известно, что у многих животных жертвами хищников становятся в первую очередь те, кто занимает в сообществе самое высокое и самое низкое положение. Изгои гибнут потому, что у них нет хорошего постоянного убежища, потому, что они вынуждены кочевать постоянно с места на место, потому, что их вытесняют из мест с хорошим кормом и они вынуждены много времени тратить на поиски пищи, вместо того чтобы сидеть себе спокойненько в норке и наслаждаться жизнью. Но и баловням фортуны не проще. Прежде всего потому, что лидер должен постоянно поддерживать свое лидерство. Он должен изгонять со своей территории чужаков, показывать кузькину мать подчиненным, постоянно демонстрировать самкам, какой он могучий и непобедимый. Так что времени на то, чтобы сидеть в норке, у него тоже не очень много.
Отбор, который благоприятствует среднему состоянию признаков, называется стабилизирующим. И работает только в сравнительно стабильных условиях. Но вот условия изменились. Скажем, резко повысилось количество корма. Животные получили возможность благополучно выкармливать помногу детенышей, большие выводки теперь прекрасно выживают. Отбор перестал давить на самок с повышенной плодовитостью, но еще сильнее давит на самок с низкой. Средняя плодовитость популяции начала увеличиваться. Это уже направленный отбор, смещающий признаки в одну сторону. И он будет работать до тех пор, пока плодовитость не придет в соответствие с новыми условиями. Тогда он снова превратится в отбор стабилизирующий.
Березовая пяденица: черная и белая формы
Один из самых ярких примеров направленного отбора – изменение окраски березовой пяденицы в Англии. Эта ночная бабочка день проводит сидя на стволах деревьев. Окраска – светло – серая, с темными крапинками – делает ее на покрытых лишайниками стволах совершенно незаметной. Первые черные экземпляры пяденицы были найдены в середине XIX столетия в окрестностях Манчестера. А уже в начале XX века черные бабочки составляли здесь почти 98 % популяции. Еще через пятьдесят лет светлых бабочек во всех промышленных районах Англии почти не осталось. Главную роль в отборе сыграли птицы. Специальные эксперименты показали, что в чистом лесу, где стволы покрыты не копотью, а лишайниками, птицы за несколько дней выедают всех черных бабочек, и лишь изредка им удается найти светлых. В промышленных районах – все наоборот.
Ядовитая бабочка Amaurus naivius – модель для подражания
Самка неядовитой бабочки Papilio merope
Существует еще и третий вариант отбора – дизруптивный, или разрывающий. Это когда существа с крайними значениями признака получают преимущество перед «середнячками». Есть случаи, когда в одной местности обитают разные формы одного и того же вида и, очень может быть, возникновение этих форм как раз и есть результат разрывающего отбора. Например, в Южной Африке один из видов бабочек-парусников имеет несколько форм, отличающихся по окраске. Встречаются эти формы в одних и тех же местах, и каждая форма «подражает» одному из ядовитых видов бабочек из этой же местности.
Вообще, такое подражание очень полезно, но только в том случае, если подражателей значительно меньше, чем ядовитых образцов для подражания. Если наоборот, то хищник просто не поймет, что таких бабочек надо избегать. Ну, попадаются среди них изредка вонючие, но большинство-то вкусные. Так что подражать сразу нескольким видам очень выгодно.
Встречаются здесь и бабочки с промежуточной окраской, ни то ни се, но редко. Поскольку бабочки «ни то ни се» выедаются хищниками гораздо чаще, чем «подражательницы», то очень может быть, что мы имеем дело с дизруптивным отбором. Разрывающий отбор – это тот единственный случай, когда отбор увеличивает изменчивость.
Склонность животных и растений походить на ядовитые, опасные или несъедобные вещи носит название мимикрии. Впервые обратил внимание на это явление английский натуралист Генри Уолтер Бейтс, современник Дарвина и близкий друг Альфреда Уоллеса. Он много лет исследовал дебри Амазонки и именно здесь заметил, что безобидные бабочки часто похожи на ядовитых. Это явление получило название «бейтсовской мимикрии». Распространена мимикрия очень широко, не только среди бабочек. Существует еще «мюллеровская мимикрия», которую обнаружил немецкий зоолог Фриц Мюллер. Это когда несколько ядовитых видов похожи друг на друга. Хищникам не нужно заучивать множество разных предупредительных сигналов, и это очень способствует их скорейшему обучению.
Зачем павлину хвост
Понятно, что для красоты. Но как он мог появится и куда смотрел отбор? Хвост павлину, или, скажем, самцу райской птицы, несомненно мешает. С таким хвостом сложно добывать пищу, а тем более спасаться от врагов. Значит, продолжительность жизни самца будет меньше и он оставит меньше потомков. Мало того. Какого черта самки выбирают таких самцов? Ведь это снижает жизнеспособность их потомков мужского пола и снижение частоты их собственных генов в будущем. Это мы с вами можем купиться на красоту, а естественный отбор признает только одну форму оплаты – жизнеспособное потомство. По идее, отбор должен был выдрать хвост павлина еще в зародыше. Можно, однако, предположить, что самка именно потому выбирает хвостатого самца, что хвост мешает ему жить. Если уж самец исхитряется благоденствовать с таким хвостом, то это, вне всякого сомнения, нечто, значит он могуч, здоров, и даже хвост не мешает ему выжить. Логично? Вроде бы да. Но есть и другая гипотеза, впрочем, первой она не про-тиворечит.
Дело может быть не только в демонстрации силы и здоровья. Самка, коль скоро она выбирает, неизбежно ориентируется на какие-то признаки. И эти признаки должны приобретать для них самостоятельную ценность, по той простой причине, что у привлекательных самцов будут привлекательные сыновья, а значит самка имеет шанс получить от брака с таким самцом больше внуков и правнуков. Самцу будет выгодно выпячивать и усиливать этот признак или признаки. До тех пор, конечно, пока недостатки такого украшения не перевесят его достоинства. Но и это объяснение не очень удовлетворяет многих биологов. Так что происхождение броских и неудобных брачных нарядов покрыто тайной, единого мнения на эту тему нет.
Понятно, что выбор партнера – очень важное дело для любого. От его наследственных качеств в значительной степени зависит жизнеспособность потомства и, следовательно, ваша приспособленность. Но самка обычно подходит к выбору партнера более тщательно, чем самец. В большинстве случаев основная тяжесть выкармливания и воспитания детей, не говоря уж о вынашивании, ложится на самку. Так что риск у самки выше, просто потому, что выше ставка. Даже если родители о потомстве не заботятся, родительский вклад самки обычно все равно больше. Выносить икринки трудней, чем сперматозоиды. Вдобавок, самец может спариться с несколькими десятками самок, количество сперматозоидов у него практически не ограничено, с какой-нибудь и повезет, потомство окажется качественным, а труд невелик. Самка же может родить за свою жизнь только ограниченное количество детей.
Понятно, что выбор партнера – очень важное дело для любого. От его наследственных качеств в значительной степени зависит жизнеспособность потомства и, следовательно, ваша приспособленность. Но самка обычно подходит к выбору партнера более тщательно, чем самец. В большинстве случаев основная тяжесть выкармливания и воспитания детей, не говоря уж о вынашивании, ложится на самку. Так что риск у самки выше, просто потому, что выше ставка. Даже если родители о потомстве не заботятся, родительский вклад самки обычно все равно больше. Выносить икринки трудней, чем сперматозоиды. Вдобавок, самец может спариться с несколькими десятками самок, количество сперматозоидов у него практически не ограничено, с какой-нибудь и повезет, потомство окажется качественным, а труд невелик. Самка же может родить за свою жизнь только ограниченное количество детей.
Кстати, нужно твердо помнить, что когда мы говорим о выборе партнера, о выгодах хвоста или, скажем, умении крокодила ловить рыбу – это метафора чистой воды. Ни павлин, ни крокодил не знают генетики, и ими движет отнюдь не желание оставить много потомков. Просто те гены, благодаря которым организм обладает строением и поведением, обеспечивающими большую плодовитость и выживаемость, начи-нают преобладать в генофонде. А их менее успешные коллеги постепенно из генофонда исчезают.
М-да… Вот перечитал я все, что понаписал в предыдущих главах, и стало мне грустно. Эволюция и ее причины – страшно интересная область биологии. Ведь это попытка разобраться в путях развития жизни вообще и в происхождении нашего собственного рода в частности. Но рассказать о путях и законах эволюции в двух коротких главах невозможно. Однако, если кому-то стало действительно интересно, разыщите для начала две книги: «Эгоистичный ген» Ричарда Докинза и «Эволюция человека» Александра Маркова. Это книги, написанные серьезными специалистами для широкого круга читателей. И читаются они, как самый захватывающий детектив.
Кто есть кто
Чем занимаются систематики
За три с половиной миллиарда лет эволюция произвела на свет неисчислимое количество разнообразных живых существ. Окинуть их единым взглядом просто невозможно. И чтобы не запутаться в полчищах мышей, лягушек, стафилококков и динозавров, их требуется разложить по полочкам. Вообще, классификация – основа любой науки, и классификация живых существ – основа биологии. Занимается классификацией организмов одна из самых старых и почтенных биологических дисциплин – систематика. Классифицировать объекты можно по самым разным признакам, например, по размеру. Или по окраске. Кстати сказать, даже такая классификация лучше, чем никакой. Но систематика недаром так называется – она строит систему. Это значит, что во внимание принимаются в первую очередь родственные связи организмов. На одну полочку укладываются живые существа, сходные по происхождению, а следственно – сходные по строению. Такая система называется филогенетической, от слова филогенез: фила – по-гречески племя, и генезис – происхождение. Вообще же, строение и происхождение не совсем одно и то же. Строение может быть в чем-то сходным в результате обитания в сходных условиях. Киты похожи на рыб, а летучие мыши на птиц. Однако, киты и летучие мыши довольно близкие родственники, а летучие мыши и птицы – весьма дальние. Так что раскладывание живых существ по полочкам отнюдь не простое занятие. Нужно учитывать не внешнее сходство и не функцию органа, а его внутреннее строение, его принципиальную конструкцию. Довольно часто принцип устройства можно понять, только рассмотрев в деталях развитие органа в ходе эмбриогенеза – развития зародыша. При таком подходе становится ясным, что в основе китового плавника, крыла летучей мыши и собачьей лапы лежит одна схема, а в основе птичьего крыла – несколько другая. И обе схемы не имеют ничего общего с крылом мухи или бабочки. Однако и этого иногда оказывается мало. В некоторых случаях установить степень родства позволяет только сравнение строения молекул белка или хромосом. Иногда пролить свет на происхождение какой-либо группы организмов позволяет их распространение на планете.
Одно из основных понятий систематики – вид. Это совокупность организмов самой близкой степени родства. Особи одного вида всегда способны скрещиваться и производить на свет плодовитое потомство, если для этого вида вообще характерно половое размножение. Близкие виды объединяются в роды, близкие роды – в семейства. А вот группы близкородственных семейств ботаники и зоологи называют по-разному, ботаники – порядками, а зоологи – отрядами. Родственные отряды (или порядки) объединяются в классы, а родственные классы в типы (зоологи) или отделы (ботаники). Высшая категория – это царство, объединяющее родственные типы или отделы. Впрочем, около десяти лет назад ввели еще одну, высшую категорию, – домен.
Шесть царств
Некогда все произведения природы натуралисты делили на три царства – царство минералов, царство растений и царство животных. Надо сказать, что даже при таком простом разделении в классификации царила изрядная путаница. Скажем, примитивных животных, таких, как губки или актинии, одно время относили к растительному царству. Но, в общем, где-то к концу XVIII столетия границу между растениями и животными удалось провести довольно четко. Однако ненадолго. В дело вмешались микробиологи, точнее, те, кто назывался тогда микроскопистами, и дело опять запуталось. Мало того, что микроскоп позволил обнаружить массу мельчайших существ, невидимых простым глазом, так еще их изучение показало, что разделить их на растения и животных зачастую просто невозможно. Во второй половине XIX века Эрнст Геккель попробовал решить проблему, введя третье царство – царство протист. К протистам стали относить всех одноклеточных созданий.
На этом, однако, дело не кончилось. Изучение протист показало, что они делятся на две четко различающиеся группы. Одни одноклеточные имели ядро, подобное ядру клеток всех растений и животных, а другие – бактерии – обходились без него. Мало того, у бактерий обнаружилось довольно много других особенностей, их строение и физиология имели мало общего со строением и физиологией клеток, обладающих ядром. В первой половине XX века американец Герберт Купеланд предложил ввести четвертое царство – царство бактерий. Довольно быстро стало ясно, что наиболее резкая граница пролегает не между царствами, а между бактериями и всеми прочими. Мир живых существ распался на две части – те, кто обладает клеточным ядром (и некоторыми другими внутриклеточными структурами), и тех, кто этих структур лишен. Первых стали называть эукариотами (полноядерными), вторых – прокариотами (доядерными).
Но и это еще не конец. Систематиков давно смущали грибы, которые с незапамятных времен обретались в царстве растений. С развитием физиологических и цитологических исследований становилось все яснее и яснее, что грибы и прочие растения имеют не больше общего, чем растения и животные. В 1958 году ситуация «прорвалась» – Роберт Виттакер предложил выделить грибы в особое царство, что и было сделано.
Очередной сюрприз человечеству преподнесли бактериологи. Среди бактерий довольно давно была известна группа так называемых метанообразующих бактерий. Они сильно отличаются от всех прочих бактерий строением клеточной оболочки и особенностями метаболизма. В семидесятых годах XX столетия обнаружилось, что у всех этих бактерий последовательность оснований в рибосомной РНК совершенно другая, чем у всех прочих. Эту группу назвали архебактериями. Затем выяснилось, что к архебактериям относится, помимо метанообразующих, и множество других прокариот. Американец Карл Ваус показал, что дистанция между обычными бактериями и архебактериями столь же велика, как между бактериями и эукариотами. Он выделил архебактерий в отдельное царство (и всего царств стало шесть) и, кроме того, предложил ввести новый, высший таксон – домен.
По современным представлениям мир живых существ разделяется на три домена: археи, бактерии и эвкарии. Домены архей и бактерий содержат по одному царству, архебактерии и эубактерии соответственно, а домен эвкарий четыре царства – протисты, грибы, растения и животные. Происхождение эубактерий и архебактерий – вопрос крайне темный. Существует две гипотезы. Согласно одной эти организмы возникли независимо друг от друга, то есть это вообще разные формы жизни. Большинство микробиологов склоняется, однако, к мнению, что архебактерии и эубактерии произошли от одного предка, причем разошлись эти ветви вскоре после возникновения жизни вообще, то есть около четырех миллиардов лет назад. При этом архебактерии сохранили больше древних и примитивных черт, свойственных первым живым существам планеты.