Думай как инженер. Как превращать проблемы в возможности - Гуру Мадхаван 4 стр.


И наконец, обстоятельства вынуждали Грибоваля выбирать между конструктивными решениями. Что важнее – улучшать маневренность или разрабатывать более мощные орудия? Можно ли уменьшить избыточный вес пушки без увеличения при этом частоты ее отказов? Одной из конструктивных особенностей пушек Грибоваля стало то, что он избавил их от лишней художественной отделки, отдав приоритет подвижности, а не красоте. Разумные компромиссы Грибоваля в сочетании с постоянными экспериментами с вариациями параметров резко повысили эффективность производства и удобство транспортировки артиллерийских орудий, а также их качество.

Во время службы в австрийской армии Грибоваля поразил царящий там размах фаворитизма и поддержка некомпетентных офицеров технической службы, тогда как квалифицированные инженеры всячески притеснялись. Грибоваль писал:

[С инженерами] обходятся сурово, а порой бесстыдно… Когда офицера даже низшего чина отправляют на какое-либо задание, он неизменно берет с собой пару инженеров, которые и выполняют трудные и неприятные части задачи. И если что-то идет не так, офицер возлагает на них всю вину, но в случае успеха приписывает все заслуги себе. Посмотрите, в каком состоянии находятся инженеры… и увидите, что большинство из них лишились лошадей и денег, измучены крайней усталостью и плохим обращением.

Чтобы обойти эту проблему, Грибоваль помог выстроить систему обучения личного состава, учитывающую его результаты, и тем самым содействовал возникновению эпохи «просветительской инженерии», как назвал ее Олдер. Для оценки основных профессиональных качеств использовалась геометрия, техническое черчение и математический анализ, которые впоследствии стали стандартными курсами в артиллерийских училищах и военных академиях. И сейчас, по прошествии веков, эти предметы продолжают служить основой инженерного образования. Используя свои технические знания для решения прикладных задач, Грибоваль помог резко повысить создание рабочих мест, количество нововведений в оборонном деле, способствовал быстрому росту новых отраслей и улучшению национальной безопасности. Ведь, как говорится, «в теории между теорией и практикой нет разницы, а на практике есть».

Глава 2 Оптимизация

1

В начале 2000-х заторы на улицах Стокгольма достигли критического уровня.

Поездки на работу и обратно стали гораздо длительнее; из-за опозданий и нервотрепок накапливалось раздражение. В часы пик продуктивность шведской столицы резко падала. Выход казался очевидным – повысить пропускную способность за счет строительства еще одного моста. Эта стратегия уже успела себя зарекомендовать: в Стокгольме насчитывались десятки мостов; в конце концов, не зря же его называли «северной Венецией». Но, поразмыслив, городские власти приняли необычное решение: обратились к группе инженеров-консультантов из IBM.

В IBM подошли к проекту как к спасательной миссии, а не «ангиопластике»[2] транспортных артерий Стокгольма. Чтобы более детально ознакомиться с проблемой, команда из IBM решила установить по городу устройства для отслеживания дорожного движения. В IBM использовали 430 тыс. приемопередатчиков, собиравших данные, и накопили 850 тыс. фотографий. На основе этой информации в компании создали общую системную модель, проведя математический анализ всего трафика движения транспорта и, казалось бы, не связанных с ним «узких мест». Результаты этой кропотливой работы убедили чиновников города, что, вместо того чтобы строить новые мосты или дороги, нужно брать плату за проезд по уже существующим мостам и шоссе в часы пик.

Введение платы за въезд дало поразительные результаты. В испытательный период системы в 2006 году дорожные пробки в Стокгольме сократились на 20–25 %. Время ожидания людей в течение поездок уменьшилось в среднем на треть – даже почти наполовину, а общественный транспорт снова завоевал популярность. Этот план помог убрать с дорог 100 тыс. машин. Уровень выбросов углекислого газа и твердых частиц резко сократился. В 2007 году в Стокгольме провели референдум, по результатам которого ввели плату за въезд на постоянной основе с использованием фотокамер. Успех шведского эксперимента привлек внимание, и города в Азии, Европе и Северной Америке начали рассматривать возможность перенять данный опыт и ввести плату за въезд в особо загруженные районы.

* * *

Места, где образуются дорожные пробки, сродни дырявым ведрам: чем больше в них льешь, тем сильнее они протекают. Кроме того, пропускная способность дорог – величина постоянная, так что появление дополнительных машин в часы пик представляет собой почти непреодолимое препятствие.

Техасский институт транспорта недавно выпустил отчет о дорожном движении в городах. В нем отмечалось, что ежегодные выбросы углекислого газа в мегаполисах США в часы пик превышают 25 млн т и «эквивалентны стартовой массе более чем 12 400 космических шаттлов с полными топливными баками». Эти выбросы – результат потребления более 11 млрд л топлива, количества, которое «могло бы заполнить четыре таких стадиона, как “Супердом” в Новом Орлеане».

На индивидуальном уровне эти цифры впечатляют. За последние 30 лет персональные издержки среднестатистического человека, который ездит на работу и обратно, возросли более чем вдвое, как и количество впустую истраченного топлива. Как отмечено в отчете, люди, регулярно совершающие подобные поездки, «в 2011 году провели в пути лишние 38 часов по сравнению с 16 часами в 1982-м». А это соответствует потере пяти рабочих дней.

«Сегодня в нашем распоряжении огромное количество установленных на дорогах сенсоров и камер, с которых автоматически загружаются данные, позволяющие совместно использовать и анализировать информацию практически в реальном времени», – пишет Навин Ламба, возглавляющий в IBM глобальное направление продуктов Intelligent Transportation. Сенсоры и приемопередатчики, на данные от которых в IBM опирались при проведении анализов, оказались незаменимыми помощниками при составлении карт дорожного движения. «Когда данным уже 5–7 минут, становится поздно вносить какие-то изменения, которые сократили бы заторы, – добавляет Ламба. – Если едущий застрял в пробке, уже не имеет смысла искать альтернативный маршрут». Прогнозирование спроса на перевозки является дополнительным вызовом; тут часто недостаточно даже данных в реальном времени.

Чтобы избавиться от пробок, не всегда целесообразно затевать новое строительство. «Нам нужно научиться извлекать больше пользы из уже существующих активов с помощью технологий», – заявляет Ламба. В Стокгольме IBM применила модульный подход при попытке разобраться в каждом из элементов системы, которые могли напрямую или косвенно способствовать возникновению пробки. Результатом стало создание новой электронной инфраструктуры: оснащение автомобилей устройствами, связанными с банковским или клиентским счетом в задействованном в программе супермаркете. Этот подход повлиял на поведение людей и сделал их поездки по городу социальным процессом. Средства, полученные от взимания платы за въезд, можно было направить на содержание и обслуживание дорожной системы города и еще какие-то цели. В данном случае введение платы за въезд в загруженные районы было не единичным, а платформенным решением, затронувшим ряд других проблем. «Дырявое ведро» превратилось в океан возможностей!

Решение, которое не срабатывает в одних условиях, в других может обусловить глубокие преобразования. В отличие от Стокгольма в какой-нибудь деревне в Африке наверняка извлекли бы пользу из дополнительной дороги или моста, так как это облегчило бы местным жителям доступ к услугам и открыло бы новые перспективы. Когда появляется приличная дорога, люди, раньше и не мечтавшие о собственной машине, могут задуматься о ее покупке. Дорога означает рост мобильности, что, в свою очередь, приводит к оживлению коммерческой деятельности.

Заторы на дорогах зависят от поведения людей. Оно принимает форму скрытых предпочтений, свойственных каждому из нас: какой вариант перемещения из одного места в другое мы выбираем. Вследствие этого поведение публики играет ключевую роль в успехе или провале проектов, касающихся инфраструктуры или инфраструктурной политики. В общем и целом причина заключается в том, что дорожное движение, как и любое другое проявление общественных отношений, представляет собой сложную систему, скомпонованную из ряда систем, взаимодействующих друг с другом без главного контролирующего элемента. Совокупные следствия их деятельности по своему характеру нелинейны и часто ведут к непредсказуемому поведению, которое называется эмерджентность[3]. Даже малейшее изменение (один оранжевый дорожный конус) может оказать непредвиденное воздействие («пробка» на автомагистрали) на систему систем, частично состоящую из дорог.

Заторы на дорогах зависят от поведения людей. Оно принимает форму скрытых предпочтений, свойственных каждому из нас: какой вариант перемещения из одного места в другое мы выбираем. Вследствие этого поведение публики играет ключевую роль в успехе или провале проектов, касающихся инфраструктуры или инфраструктурной политики. В общем и целом причина заключается в том, что дорожное движение, как и любое другое проявление общественных отношений, представляет собой сложную систему, скомпонованную из ряда систем, взаимодействующих друг с другом без главного контролирующего элемента. Совокупные следствия их деятельности по своему характеру нелинейны и часто ведут к непредсказуемому поведению, которое называется эмерджентность[3]. Даже малейшее изменение (один оранжевый дорожный конус) может оказать непредвиденное воздействие («пробка» на автомагистрали) на систему систем, частично состоящую из дорог.

На эту тему весьма показательно высказался один из изобретателей интернета, Винтон Серф. Однажды Серф пытался засыпать черный перец в мельницу через воронку. «Несколько горошин попали внутрь, а потом застряли. Если бы я бросал их туда по одной, то проблемы не возникло бы, – резонно замечает Серф. – Но я засыпал в воронку несколько горошин, и в данном случае эмерджентным свойством стал затор».

Для оптимизации полезно иметь общее представление о сложных, широкомасштабных эффектах (например, изменение поведения), которые проистекают из простых правил (плата за въезд в районы с пробками). «Дело в том, что одна горошина перца не создаст затора, – добавляет Серф. – А самое интересное, что в горошине перца мало что может объяснить ее свойства, ведущие к образованию пробок, разве что тот факт, что причина – в трении».

* * *

Любой может заявить, что способен что-то оптимизировать, но слова – это одно, а практика – совсем другое. Оптимизация сродни посещениям спортзала, когда вы увеличиваете количество силовых тренировок. Как получить наилучшие результаты от тренировки в кратчайший срок? Как постоянно что-то улучшать?

Оптимизация состоит из двух основных компонентов. Первый – это цель, направленная на максимизацию или минимизацию выходной переменной, которая обычно зависит от чего-либо еще. Целью оптимизации Грибоваля было нанести максимальный урон противнику, а более широкой задачей – выиграть войну. Оптимизация также включает какое-нибудь ограничение, состоящее из лимитирующих факторов, воздействию которых подвергается цель. Исследователи операций, применяющие модели и изучающие способы улучшения эффективности, сочли бы цель Грибоваля классической «задачей на целеполагание» и разработали бы для нее алгоритм. Как Грибоваль, действуя в условиях ограниченного времени и ресурсов, мог бы найти набор инструментов (или их сочетание) и распределить их оптимальным образом для достижения своей цели?

Инженеры применяют разнообразные методы моделирования, чтобы получить приблизительные репрезентации[4] реальности, которые по определению не являются точными. Есть два основных вида моделей: имплицитные[5] и эксплицитные[6]. В имплицитных моделях, согласно описанию Джошуа Эпштейна, профессора Университета Джонса Хопкинса, «предположения скрыты, внутренняя согласованность не проверена, их логические последствия неизвестны, как и их соответствие данным». В связи с этим, «когда вы закрываете глаза и представляете себе распространение эпидемии или какой-либо другой динамический процесс в обществе, то применяете ту или иную модель. Просто это имплицитная модель, которую вы не записали». В эксплицитных же моделях предположения, эмпирические оговорки и уравнения четко представлены для анализа и проверки. При одном наборе предположений «происходит одно; а когда вы их меняете – другое».

Среди многих преимуществ моделирования, как подчеркивает Эпштейн, в том числе и возможность «продемонстрировать компромиссы и предложить способы повышения эффективности или даже выяснить, что кажущееся простым на самом деле сложно, [а сложное – просто]». Модели выявляют области, требующие больше данных, и показывают, какую нужно выполнить работу. Сбор данных о загруженности дорог во всех уголках Стокгольма подкрепил модель IBM и окончательное решение компании порекомендовать ввести плату за въезд в проблемные районы.

Идеальных моделей для оптимизации не бывает. Каждая модель ограничена своими предположениями и подвергается критике за то, что сводит действительность к простым уравнениям. «Простые модели могут оказаться бесценными, но при этом “неправильными” с точки зрения инженерии, – говорит Эпштейн. – Но от этой их неправильности – сплошная польза. Они – абстракции, которые многое помогают узнать». Однако главная задача применения моделей для подкрепления оптимизации – разработать структуру, позволяющую четко определять ограничения и компромиссы.

При всей своей ценности модели иногда сбивают с толку. Обычное для инженеров заблуждение – предполагать, что модель, успешно работающая на одном уровне, окажется такой же эффективной на другом. Это необязательно. В действительности эмерджентные свойства в сложных системах почти всегда зависят от изменения масштаба. Инженер-строитель Джон Купренас и архитектор Мэтью Фредерик убедились в этом благодаря астроному викторианской эпохи сэру Роберту Боллу:

Вымышленная команда инженеров попыталась создать «суперконя», который был бы в два раза выше обычной лошади. Но, сделав это, они обнаружили, что получившееся животное весьма проблемное и ущербное. Оно было вдвое выше, шире и длиннее и в результате весило в восемь раз больше обычного. Однако площадь поперечного сечения его вен и артерий оказалась лишь в четыре раза больше, чем у стандартного коня, из-за чего его сердцу приходилось работать в два раза интенсивнее. Площадь поверхности его копыт в четыре раза превышала площадь копыт обычной лошади, но у каждого копыта нагрузка на единицу площади была вдвое больше. В итоге сей болезненный экземпляр пришлось усыпить.

Модели – это вспомогательные системы, которые способствуют принятию решений, но сами окончательными решениями не являются. Проливая свет на плюсы и минусы, связанные с конечной целью, хорошие модели позволяют проверить реальное положение вещей при оптимизации. В случае с IBM главной целью была минимизация дорожных заторов в Стокгольме, которые, как оказалось, зависели от использования автомобилей в часы пик. Ограничения включали фиксированную пропускную способность дорог, бюджет местных органов власти и скрытые предпочтения людей. Вполне естественно, что отправной точкой для полного понимания и оптимизации такой сложной системы стало построение модели.

2

В начале 1940-х годов в Почтовом департаменте США разразился кризис. Во время Второй мировой войны многие почтовые работники ушли в армию. А годовой объем почты стремительно увеличивался (к 1950 году он достиг 45 млрд почтовых отправлений), в значительной степени благодаря бурному росту прямой почтовой рекламы за предыдущие 20 лет. Как же департамент мог оптимизировать доставку почты по всей стране?

Из-за сложностей, связанных с затратами, эффективностью, точностью, графиком доставки и, возможно, будущим самого учреждения, в Почтовом департаменте решили применить инженерный подход. Его результаты представляют немалый интерес, так как вошли в число величайших достижений нынешней почтовой системы США, а также принесли пользу всем странам мира.

Разработчики системы разделили США на «зоны», присвоив каждой отдельный идентификационный номер из пяти цифр. И в 1963 году, после двух десятилетий исследований и инженерных работ, почтовая служба объявила о внедрении ZIP-кода (Zone Improvement Plan codes – система почтовых индексов, используемая Почтовой службой США). В результате появилась качественно новая система, позволявшая соединять отправителей и получателей почты.

Действия создателей ZIP-кода были воплощением мышления модульных систем. Разработчики разделили страну на 10 регионов, пронумерованных от 0 до 9. Начав с Восточного побережья, они присвоили штату Мэн номер 0 и продвигались далее на запад. ZIP-коды в штате Нью-Йорк и некоторых соседних штатах начинались с 1; в Вашингтоне, округ Колумбия, – с 2; у штатов на западном побережье – с 9 и т. д. Другие цифры в коде обозначали дальнейшее разделение этих зон согласно расположению узловых объектов почтовой связи и ближайшего почтового отделения в конкретном районе.

Чтобы облегчить сортировку почты в каждой зоне, была разработана специализированная техника. Но понадобилось время, чтобы повысить ее точность, так как в процессе сортировки присутствовал человеческий фактор: оператор должен был вводить ZIP-код каждого конверта или посылки в сортировочную машину с помощью клавиатуры и при этом часто делал опечатки и ошибки. Например, письмо, адресованное в Чемулт (Chemult), штат Орегон, могли направить в Кастер (Custer), штат Южная Дакота, а потом оно пересылалось в узловое почтовое отделение в Денвере, штат Колорадо.

Назад Дальше