Введение в логику и научный метод - Моррис Коэн 9 стр.


Таким образом, на основании различий, проведенных по количеству и качеству, мы можем насчитать четыре формы категорических суждений. «Все трезвенники живут недолго» является общеутвердительным суждением и обозначается буквой « А ». «Ни один политик не является злобным» является общеотрицательным суждением и обозначается буквой «Е». «Некоторые профессора являются мягкосердечными» – частноутвердительное суждение, обозначающееся буквой « I ». «Некоторые язычники не являются глупыми» – частноотрицательное и обозначается буквой «О». Буквы « А » и « I » традиционно использовались для утвердительных суждений: они являются первыми двумя гласными в слове «affirmo» [16] , тогда как « Е » и « О » обозначают отрицательные суждения: они – гласные в слове «nego» [17] .

Исключительные и исключающие суждения

В таких суждениях, как «только те, кто зол, счастливы», «только ленивые – бедные», «никто, кроме дикарей, не является здоровым», нечто предицируется чему-то исключительным образом. Поэтому такие суждения называются исключительными. Традиционная логика сводит их к канонической форме категорических суждений. Например, в суждении «только те, кто зол, счастливы» утверждается то же самое, что и в суждении «все счастливые люди – злы». В суждении «никто, кроме храбрых, не заслуживает справедливости» утверждается то же самое, что и в суждении «все, кто заслуживает справедливости, храбры». В суждении «никто, кроме старшекурсников, не допускается» утверждается то же самое, что и в суждении «допускаются только старшекурсники».

В таких суждениях, как «все студенты, кроме первокурсников, могут курить», «все, кроме нескольких, были убиты», «детям, кроме тех, которых привели родители, вход воспрещен», предикат отрицается относительно некоторой части денотации субъекта. Поэтому такие суждения называются исключающими. Их также можно выразить в стандартной форме категорических суждений, поскольку любое исключающее суждение можно сформулировать как исключительное. Так, «все студенты, кроме первокурсников, могут курить» может быть сведено к суждению «из всех студентов только первокурсники не могут курить». Следовательно, данное исключающее суждение может быть сформулировано как суждения вида А: «Все студенты, которые не могут курить, являются первокурсниками».

Распределенность терминов

На данном этапе мы введем новый технический термин. Входящий в суждение термин мы будем называть распределенным, когда он указывает на все обозначаемые им индивиды. Нераспределенным мы будем называть термин, если он указывает лишь на неопределенную часть обозначаемых им индивидов.

Теперь определим, какие из терминов в каждом из четырех типов суждений являются распределенными. Не вызывает сомнения, что в общих суждениях субъект всегда является распределенным, а в частных – нераспределенным. Какова ситуация с предикатными терминами? В суждении «все судьи являются справедливыми» указываются ли все индивиды, обозначаемые словом «справедливый»? Разумеется, не все, поскольку в суждении ничего не говорится о том, являются ли все справедливые люди судьями. Поэтому предикат в суждениях типа А является нераспределенным. То же самое можно сказать и про суждения типа I. Таким образом, можно сделать заключение, что в утвердительных суждениях предикат не распределен.

Сохраняется ли эта закономерность для отрицательных суждений? Рассмотрим суждение «ни один полицейский не является красивым». В данном суждении утверждается не только то, что каждый человек, обозначаемый термином «полицейский», исключается из класса людей, обозначаемых термином «красивый», но также и то, что все индивиды, составляющие объем термина «красивый», также исключаются из объема термина «полицейский». Следовательно, предикат в суждениях типа Е является распределенным. То же самое относится и к суждениям типа О. Так, в суждении «некоторые из моих книг не находятся на этой полке» некоторая неопределенная часть класса, представляемого субъектом, исключается из целого класса, обозначаемого предикатом. Это станет более понятным, если читатель задастся вопросом о том, какую часть находящихся на полке книг ему придется проверить, чтобы убедиться в истинности данного суждения. Разумеется, проверить лишь часть находящихся на полке книг будет недостаточно. Читателю придется проверить все книги на полке. Следовательно, предикат является распределенным.

Мы можем резюмировать наше рассуждение, сказав, что в общих суждениях субъект является распределенным, тогда как в частных – нераспределенным. Что касается предиката, то он является распределенным только в отрицательных суждениях, а в утвердительных суждениях – нераспределенным.

Понятие распределенности терминов имеет большое значение в традиционной логике и играет ключевую роль в теории силлогизма. Поэтому мы рекомендуем читателю хорошо его усвоить. Мимоходом отметим, что субъектно-предикатный анализ суждений вместе с понятием распределенности может привести к неизящным результатам. Так, согласно традиционному анализу, суждение «Сократ был курносым» является общим, а его субъект должен быть распределенным, поскольку курносость предицируется всему Сократу. Однако в то время на основании таких общих суждений, как «все дети – жадные», можно получить соответствующее им частное суждение, в котором субъект «дети» будет нераспределенным, частного суждения, которое соответствовало бы единичным суждениям, найти нельзя. Термин «Сократ» ни при каких обстоятельствах не может быть нераспределенным. Ниже мы столкнемся еще с рядом аспектов, в которых общие и единичные суждения не рассматриваются традиционной логикой как симметричные.

Изображение в схемах

Структуру четырех типов категорических суждений можно выразить в более интуитивно понятном виде, если принять определенные схематические изображения. Для выражения структуры категорических суждений было изобретено много методов, каждый из которых служил определенным целям. Самый ранний метод был предложен швейцарским математиком Эйлером, жившим в XVIII веке. Мы рассмотрим его метод в несколько модифицированном виде.

Примем следующие конвенции. Круг, нарисованный сплошной линией, будет означать распределенный термин. Круг, изображенный (частично или полностью) пунктиром, будет означать нераспределенный термин. Круг, нарисованный внутри другого круга, будет означать то, что один класс включен в другой класс. Два несоприкасающихся круга будут означать взаимное исключение двух классов. Наконец, два пересекающихся круга будут означать либо неопределенное частичное включение, либо неопределенное частичное исключение.

Четыре отношения между классами, обозначаемыми терминами «дворник» и «бедняк», характеризуют четыре категорических суждения (в каждом из которых субъект представлен термином «дворник») и схематично могут быть выражены следующим образом:

Круг с буквой «S» означает класс «дворники» (субъект), а круг с буквой «Р» означает класс «бедняки» (предикат).

Иногда удобно пользоваться другим методом, выражающим структуру категорических суждений. Его разработал английский логик Джон Венн. Сначала мы усматриваем то, что каждое суждение неявно указывает на некоторый контекст, в рамках которого оно является значимым. Так, суждение «Гамлет убил Полония» указывает на пьесу Шекспира. Назовем область указания предметной областью (универсумом рассуждения) и представим его на схеме в виде прямоугольника. Читатель может видеть, что два класса, вместе с их отрицаниями, образуют лишь четыре комбинации. (Под термином «отрицание класса» понимается что угодно в предметной области, не входящее в данный класс.) Например, в предметной области, состоящей только из людей, существуют объекты, являющиеся и дворниками, и бедняками (символически выраженные как SP), или которые являются дворниками, но не бедняками (

), или не являющиеся дворниками, но являющиеся бедняками (

), или ни теми, ни другими (

). Предметная область, таким образом, делится на четыре возможных сектора. Однако не всегда такие возможные отсеки будут содержать индивидов в качестве членов. В каких отсеках будут индивиды, а в каких нет, будет зависеть от того, что утверждается в суждениях, указывающих на соответствующую предметную область.


Поэтому изобразим два пересекающихся круга внутри прямоугольника. Мы автоматически получим четыре различных сектора, по одному на каждую из указанных логических возможностей. Поскольку в суждении типа А утверждается, что все дворники включены в класс бедняков, класс дворников, не являющихся бедняками, не может содержать никаких членов. Чтобы проявить это на схеме, договоримся заштриховывать соответствующий сектор. Таким образом, на схеме для суждения типа А будет показано, что сектор

Поэтому изобразим два пересекающихся круга внутри прямоугольника. Мы автоматически получим четыре различных сектора, по одному на каждую из указанных логических возможностей. Поскольку в суждении типа А утверждается, что все дворники включены в класс бедняков, класс дворников, не являющихся бедняками, не может содержать никаких членов. Чтобы проявить это на схеме, договоримся заштриховывать соответствующий сектор. Таким образом, на схеме для суждения типа А будет показано, что сектор

пуст. Мы также можем продемонстрировать это более наглядно, написав под прямоугольником «

= 0», где «0» означает, что данный класс не содержит членов. Далее суждение «все дворники – бедняки» подразумевает, что в его предметной области не существует индивидов, которые являлись дворниками, но не бедняками.


В случае с суждением типа I процедура его выражения – несколько иная. Если мы зададимся вопросом о том, что, собственно, утверждается в суждении «некоторые дворники – бедняки», то обнаружим, что в нем не утверждается, что существуют индивиды, являющиеся дворниками, но не бедняками (здесь читатель может вспомнить, что нами было сказано выше относительно значения слова «некоторые»). В данном суждении также не утверждается и того, что в каждом из четырех секторов содержатся члены. Минимум, необходимый для того, чтобы данное суждение было истинным, заключается в требовании того, чтобы класс индивидов, которые являются дворниками и бедняками, не был пустым.


Договоримся обозначать данный минимум изображением звездочки в секторе SP, которая будет указывать на то, что он не является пустым. Тем самым мы не уточняем, содержатся члены в других секторах или нет. Еще один способ обозначить непустой сектор – это написать «SP 0» под прямоугольником. Данная запись сообщает, что в данном неравенстве часть, находящаяся слева, не лишена членов. Читателю следует подробно изучить оставшиеся схемы. Он обнаружит, что анализ суждений типа Е и О похож на анализ суждений типа А и I соответственно.

Экзистенциальная нагруженность категорических суждений

Если мы на данном этапе сравним наши схемы, то обнаружим, что между общими и частными суждениями имеет место примечательное различие. В общих суждениях не утверждается существование каких-либо индивидов, но при этом в них также попросту отрицается существование индивидов того или иного вида. В частных суждениях не отрицается существование чего-либо, однако просто утверждается то, что некоторые классы имеют члены. Следовательно, общее суждение «все дворники – бедняки» означает только следующее: если некоторый индивид является дворником, то он является бедняком. Здесь не утверждается, что на самом деле имеются индивиды, являющиеся дворниками. С другой стороны, частное суждение «некоторые дворники – бедняки» означает, что существует, по крайней мере, один индивид, являющийся одновременно и дворником, и бедняком.

Мы предвосхитим некоторые последующие темы данной книги, сформулировав суть дела следующим образом. Общее суждение «все дворники – бедняки» следует понимать как утверждающее: для всех частных случаев или значений X, если X является дворником, то X является бедняком. Частное суждение «некоторые дворники – бедняки» следует понимать как утверждающее: существует X такой, что X является дворником и что X является бедняком . Данное уточнение поможет нам понять, почему для современной логики представляется проблематичной одинаковая классификация таких суждений, как «Наполеон был солдатом» и «все французы – солдаты». Второе суждение, как мы видели, при анализе означает: для всех частных случаев или значений X, если X является французом, то X является солдатом . Первое же суждение, в свою очередь, никак не может быть понято подобным образом. Мы еще вернемся к данной теме.

Мы достигли следующего заключения: общие суждения не имплицируют существования каких-либо конкретных случаев, тогда как частные суждения имплицируют. Данное заключение может показаться читателю парадоксальным. (В самом деле, для того чтобы прояснить, насколько данное заключение зависит от наших соглашений, а насколько навязывается нам логическими соображениями, требуется более подробное исследование, чем то, которое мы можем себе здесь позволить.) Быть может, читатель приведет в пример суждение типа «все собаки суть верные» и скажет, что оно имплицирует существование собак. Действительно, может вполне статься, что, утверждая «все собаки суть верные», читатель может подразумевать и утверждать суждение «существуют собаки». Однако в таком случае ему следует обратить внимание, что он делает два отдельных и отличающихся друг от друга утверждения. В суждении же «пусть бросит камень тот, кто безгрешен» с очевидностью не имплицируется, что в действительности существуют безгрешные индивиды. Общее суждение может быть просто гипотезой относительно класса, который, как мы заранее знаем, не содержит членов.

Так, первый закон движения Ньютона гласит: все тела, не испытывающие воздействия со стороны других тел, всегда сохраняют состояние покоя или равномерного прямолинейного движения. Станет ли читатель утверждать, что в данном суждении утверждается существование какого-либо тела, не испытывающего воздействия со стороны других тел? Нам стоит лишь напомнить ему о законе тяготения, согласно которому все тела притягивают друг друга. В первом же законе Ньютона утверждается гипотеза о том, что если бы некоторое тело не испытывало воздействия со стороны других тел, оно всегда сохраняло бы состояние покоя или равномерного прямолинейного движения. Точно так же в принципе рычага говорится о том, что имело бы место, если бы рычаг был идеально жестким телом. В этом принципе не утверждается, что такое тело существует. На самом деле исследование принципов различных наук достаточно ясно демонстрирует, что общие суждения в науке всегда функционируют в качестве гипотез, а не высказываний о фактах, в которых утверждалось бы существование индивидов, представлявших частные случаи данных суждений. Разумеется, истинным является и то, что если бы общие суждения не были применимыми в практике, то стали бы бесполезными для науки, которая имеет дело с фактами. Истинно также и то, что значение общих высказываний требует, по крайней мере, применимости в возможных фактах. Однако мы не можем отождествлять абстрактные возможности, описываемые общими суждениями, и то, что действительно существует, поскольку последнее является местом, в котором абстрактные возможности либо исключаются, либо сочетаются с другими возможностями. Так, инерция считается фазой любого механического действия, хотя ни один частный случай инерции самой по себе не может быть найден в природе. Принцип рычага применим в той мере, в какой тела в действительности являются жесткими, хотя нет частных примеров чистой жесткости отдельно от других свойств тел.

На данный вопрос можно посмотреть и с другой стороны. До настоящего момента мы говорили, что в суждениях утверждаются отношения между классами индивидов. На с. 68 мы видели, что суждения могут пониматься как утверждающие определенные связи между признаками. Рассмотрение общих суждений, как не утверждающих существования каких-либо индивидов, выводит на первый план их понимание в терминах постоянных связей между признаками.

Наконец, следует отметить, что, затрагивая вопрос об экзистенциальной нагруженности, мы вовсе не обязаны сводить область указания терминов к физическому универсуму. Когда мы спрашиваем: «Была ли у Юпитера дочь?» или «Был Гамлет на самом деле сумасшедшим?», мы задаемся вопросом не о физическом существовании, а о существовании индивидов в рамках некоторой предметной области, управляемой определенными допущениями, в нашем случае утверждениями о Гомере или Шекспире. Поэтому индивид, «существование» которого допускается в одной предметной области (универсуме рассуждения), может не существовать в другой. В суждении «Самсон – это чистый миф» отрицается существование Самсона в универсуме достоверной истории, однако, разумеется, оно не отрицается для области библейской мифологии.

Таким образом, когда в формальной логике говорится о том, что общие суждения не имплицируют, а частные имплицируют существование отдельных случаев, читатель может понимать это (по крайней мере, отчасти) как указание на различные функции, которые каждый из типов суждений выполняет в научном исследовании. Мы не можем обоснованно выводить истинность суждения, в котором речь идет о наблюдении, из посылок, в которых не содержится суждения, полученного на основании наблюдения. Точно так же не можем мы и выводить истинность частного суждения только из посылок, содержащих общие суждения, если, конечно, мы неявным образом не допускаем как само собой разумеющееся существование членов классов, на которые указывают термины общих суждений.

Назад Дальше