Биология. Общая биология. Базовый уровень. Учебник для 10–11 класс - Екатерина Захарова 3 стр.


Первый, кто оценил значение увеличительного прибора и применил его для исследования срезов растительных и животных тканей, был английский физик и ботаник Роберт Гук. В 1665 г., изучая срез пробки, он обнаружил структуры, похожие по строению на пчелиные соты, и назвал их ячейками, или клетками (рис. 3). С тех пор этот термин прочно утвердился в биологии. Правда, надо отметить, что Р. Гук считал, что клетки пустые, а живое вещество – это клеточные стенки.

Примерно в это же время, во второй половине XVII в., известный голландский исследователь Антони ван Левенгук усовершенствовал микроскоп и смог наблюдать живые клетки с увеличением более чем в 200 раз. Именно он впервые в 1683 г. описал бактерии.

Еще до открытия клетки, в середине XVII в., известный английский врач Уильям Гарвей предположил, что все живые организмы развиваются из яйца. Это предположение блестяще доказал российский ученый Карл Максимович Бэр, который в 1827 г. обнаружил яйцеклетку млекопитающих. Данное открытие позволило ему сделать вывод, что каждый организм развивается из одной клетки.

В 1831–1833 гг. Роберт Броун обнаружил в растительных клетках сферическую структуру, которую назвал ядром.

Создание клеточной теории. Для понимания роли клетки в живых организмах огромное значение имели труды ботаника Матиаса Шлейдена и зоолога Теодора Шванна. Т. Шванн, проанализировав все существующие на тот момент знания о клеточном строении живой природы, сформулировал первую версию клеточной теории. Она постулировала, что все организмы, и растительные, и животные, состоят из простейших частей – клеток. Причем каждая клетка в определенном смысле – некое индивидуальное самостоятельное целое. Но в одном организме все клетки действуют совместно, формируя гармоничное единство.

Правда, Шлейден и Шванн ошибались, считая, что новые клетки могут возникать из неклеточного вещества. Это заблуждение было опровергнуто немецким ученым Рудольфом Вирховым, который показал, что все клетки образуются из других клеток путем клеточного деления. В 1858 г. Р. Вирхов написал: «Всякая клетка происходит из другой клетки… Там, где возникает клетка, ей должна предшествовать клетка, подобно тому, как животное происходит только от животного, растение – только от растения».

Клеточная теория оказала огромное влияние на развитие биологии и на формирование современной естественнонаучной картины мира. По определению Ф. Энгельса, клеточная теория, закон превращения энергии и эволюционная теория Ч. Дарвина являются тремя величайшими открытиями естествознания XIX в. На основе клеточной теории в середине XIX в. возникла цитология (от греч. цитос – вместилище, клетка) – наука, изучающая структуру и функции клетки.

К концу XIX в. благодаря усовершенствованию микроскопической техники были открыты основные структурные компоненты клетки и изучен процесс ее деления. Немецкий естествоиспытатель Август Вейсман окончательно установил, что хранение и передача наследственных признаков в клетке осуществляются с помощью ядра. Изобретенный в 30-е гг. XX в. электронный микроскоп дал возможность исследовать ультраструктуру клетки. Было обнаружено удивительное сходство в тонком строении клеток различных организмов.

Рис. 3. Микроскоп Роберта Гука и сделанный им рисунок микроскопической структуры тонкого среза пробки

Каждая клетка покрыта плазматической мембраной и имеет внутреннее содержимое – цитоплазму. Любая клетка обладает генетическим материалом, содержащим наследственную информацию о строении и функционировании самой клетки и всего организма в целом. В зависимости от расположения этого генетического материала все клетки делятся на прокариотические (доядерные), наследственный материал которых находится непосредственно в цитоплазме, и эукариотические (ядерные), чей генетический материал отделен от цитоплазмы ядерной оболочкой, т. е. находится в ядре.

Клетка функционирует как единое целое, отвечая на воздействия внешней среды, взаимодействуя с другими клетками, входя в состав многоклеточных организмов. Она обеспечивает связь между поколениями, являясь носителем наследственной информации. Клетка может представлять целый самостоятельный организм, как, например, амеба, и в этом случае ее деятельность гораздо разнообразнее, чем работа специализированной клетки многоклеточного организма.

Несмотря на принципиальное сходство во внутреннем строении, клетки могут существенно отличаться по размеру и форме. Например, человеческий организм состоит из сотни видов клеток (рис. 4). Самой крупной среди них является яйцеклетка (до 200 мкм), а одними из самых мелких – некоторые клетки в нервной ткани (около 5 мкм). Эритроциты человека имеют форму двояковогнутого диска, клетки гладкой мышечной ткани похожи на длинное узкое веретено, клетки эпителия могут быть кубическими, плоскими, цилиндрическими, а лейкоциты вообще не имеют постоянной формы. Крупные остеоциты с многочисленными отростками входят в состав костной ткани, а разнообразные нервные клетки звездчатой, веретеновидной, пирамидальной и иной формы имеют сложные ветвящиеся отростки, длина которых может достигать 1 м и более.

Рис. 4. Разнообразные типы клеток человека: А – клетка костной ткани; Б – клетки жировой ткани; В – эпителиальные клетки щеки; Г – клетки щитовидной железы

При всем этом разнообразии клеткам присущи общие признаки. Все клетки являются открытыми системами, которые обмениваются веществом и энергией с окружающей средой. Рост и развитие, размножение и раздражимость – эти свойства, необходимые для поддержания жизни, характерны для всех клеток.

Основные положения клеточной теории. Основные положения клеточной теории Т. Шванна, как важнейшего биологического обобщения XIX в., актуальны и в наше время, когда современная цитология, вобрав в себя достижения генетики, молекулярной и физико-химической биологии, превратилась в бурно развивающуюся науку – клеточную биологию.

Однако в свете современных знаний сформировались более глубокие представления о структуре и функциях клетки. Рассмотрим основные положения современной клеточной теории.

Клеткаэлементарная единица живого. Клетка является наименьшей структурно-функциональной единицей живого и представляет собою открытую, саморегулирующуюся, самовоспроизводящуюся систему. Вне клетки жизни нет.

Существование вирусов – неклеточной формы жизни – не противоречит этому положению клеточной теории, потому что размножаться вирусы могут только внутри живых клеток. Являясь паразитами на генетическом уровне, вне клетки они не способны к самовоспроизведению и метаболизму.

Все клетки сходны, по своему химическому составу и имеют общий план строения. Общий принцип организации клеток определяется обязательными функциями, необходимыми для поддержания собственной жизнедеятельности. Однако клетки обладают и специфическими особенностями, связанными с выполнением клетками специальных функций и возникающими в результате клеточной дифференцировки.

Клетка происходит только от клетки. Размножение (увеличение числа) клеток происходит только путем деления предшествующих клеток. Миллиарды клеток, из которых состоит живой организм, возникли в результате делений оплодотворенного яйца (зиготы), поэтому все клетки организма генетически одинаковы.

Многоклеточные организмы представляют собой сложно организованные интегрированные системы, состоящие из взаимодействующих клеток. Кроме клеток в состав многоклеточных организмов входят неклеточные компоненты и гигантские многоядерные образования. Многоклеточный организм обладает новыми специфическими чертами и свойствами, которые не являются простым суммированием свойств составляющих его клеток.

Сходное клеточное строение организмовсвидетельство того, что все живое имеет единое происхождение.

Вопросы для повторения и задания

1. Расскажите об истории открытия клетки.

2. Кем и когда впервые была сформулирована клеточная теория?

3. Перечислите современные положения клеточной теории.

4. Охарактеризуйте значение клеточной теории для развития биологии.

5. Подумайте, для каких представителей органического мира понятия «клетка» и «организм» совпадают?

2.2. Химический состав клетки

Вспомните!

Что такое химический элемент?

Какие химические элементы преобладают в земной коре?

Что вам известно о роли таких химических элементов, как иод, кальций, железо в жизнедеятельности организмов?

Одним из основных общих признаков живых организмов является единство их элементного химического состава. Независимо от того, к какому царству, типу или классу принадлежит то или иное живое существо, в состав его тела входят одни и те же, так называемые универсальные химические элементы. Сходство в химическом составе разных клеток свидетельствует о единстве их происхождения.

В живой природе обнаружено около 90 химических элементов, т. е. большая часть всех известных на сегодняшний день. Никаких специальных элементов, характерных только для живых организмов, не существует, и это является одним из доказательств общности живой и неживой природы. Но количественное содержание тех или иных элементов в живых организмах и в окружающей их неживой среде существенно отличается. Например, кремния в почве около 33 %, а в наземных растениях лишь 0,15 %. Подобные различия указывают на способность живых организмов накапливать только те элементы, которые необходимы им для жизнедеятельности (рис. 5).

В зависимости от содержания все химические элементы, входящие в состав живой природы, разделяют на несколько групп.

Макроэлементы. I группа. Главными компонентами всех органических соединений, выполняющих биологические функции, являются кислород, углерод, водород и азот. Все углеводы и липиды содержат водород, углерод и кислород, а в состав белков и нуклеиновых кислот, кроме этих компонентов, входит азот. На долю этих четырех элементов приходится 98 % от массы живых клеток.

Рис. 5. Панцири одноклеточных диатомовых водорослей содержат большое количество кремния

II группа. К группе макроэлементов относятся также фосфор, сера, калий, магний, натрий, кальций, железо, хлор. Эти химические элементы являются обязательными компонентами всех живых организмов. Содержание каждого из них в клетке составляет от десятых до сотых долей процента от общей массы.

Натрий, калий и хлор обеспечивают возникновение и проведение электрических импульсов в нервной ткани. Поддержание нормального сердечного ритма зависит от концентрации в организме натрия, калия и кальция. Железо участвует в биосинтезе хлорофилла, входит в состав гемоглобина (белка-переносчика кислорода в крови) и миоглобина (белка, содержащего запас кислорода в мышцах). Магний в клетках растений входит в состав хлорофилла, а в животном организме участвует в формировании ферментов, необходимых для нормального функционирования мышечной, нервной и костной тканей. В состав белков часто входит сера, а все нуклеиновые кислоты содержат фосфор. Фосфор также является компонентом всех мембранных структур.

Среди обеих групп макроэлементов кислород, углерод, водород, азот, фосфор и сера объединяются в группу биоэлементов, или органогенов, на основании того, что они составляют основу большинства органических молекул (табл. 1).

Таблица 1. Содержание биоэлементов в клетке

Микроэлементы. Существует большая группа химических элементов, которые содержатся в организмах в очень низких концентрациях. Это алюминий, медь, марганец, цинк, молибден, кобальт, никель, иод, селен, бром, фтор, бор и многие другие. На долю каждого из них приходится не более тысячных долей процента, а общий вклад этих элементов в массу клетки – около 0,02 %. В растения и микроорганизмы микроэлементы поступают из почвы и воды, а в организм животных – с пищей, водой и воздухом. Роль и функции элементов этой группы в различных организмах весьма разнообразны. Как правило, микроэлементы входят в состав биологически активных соединений (ферментов, витаминов и гормонов) и их действие проявляется, главным образом, в том, как они влияют на обмен веществ.

Кобальт входит в состав витамина В12 и принимает участие в синтезе гемоглобина, его недостаток приводит к анемии. Молибден в составе ферментов участвует в фиксации азота у бактерий и обеспечивает работу устьичного аппарата у растений. Медь является компонентом фермента, участвующего в синтезе меланина (пигмента кожи), влияет на рост и размножение растений, на процессы кроветворения у животных организмов. Иод у всех позвоночных животных входит в состав гормона щитовидной железы – тироксина. Бор влияет на ростовые процессы у растений, его недостаток приводит к отмиранию верхушечных почек, цветков и завязей. Цинк действует на рост животных и растений, а также входит в состав гормона поджелудочной железы – инсулина. Нехватка селена приводит к возникновению у человека и животных раковых заболеваний. Каждый элемент играет свою определенную, очень важную роль в обеспечении жизнедеятельности организма.

Как правило, биологический эффект того или иного микроэлемента зависит от присутствия в организме других элементов, т. е. каждый живой организм – это уникальная сбалансированная система, нормальная работа которой зависит, в том числе, и от правильного соотношения ее компонентов на любом уровне организации. Так, например, марганец улучшает усвоение организмом меди, а фтор влияет на метаболизм стронция.

Обнаружено, что некоторые организмы интенсивно накапливают определенные элементы. Например, многие морские водоросли накапливают иод, хвощи – кремний, лютики – литий, а моллюски отличаются повышенным содержанием меди.

Микроэлементы широко используются в современном сельском хозяйстве в виде микроудобрений для повышения урожайности культур и в качестве добавок к кормам для увеличения продуктивности животных. Применяются микроэлементы и в медицине.

Ультрамикроэлементы. Существует группа химических элементов, которые содержатся в организмах в следовых, т. е. ничтожно малых концентрациях. К ним относят золото, бериллий, серебро и другие элементы. Физиологическая роль этих компонентов в живых организмах пока окончательно не установлена.

Роль внешних факторов в формировании химического состава живой природы. Содержание тех или иных элементов в организме определяется не только особенностями данного организма, но также составом среды, в которой он обитает, и той пищей, которую он использует. Геологическая история нашей планеты, особенности почвообразовательных процессов привели к тому, что на поверхности Земли сформировались области, которые отличаются друг от друга по содержанию химических элементов. Резкий недостаток или, наоборот, избыток какого-либо химического элемента вызывает в пределах таких зон возникновение биогеохимических эндемий – заболеваний растений, животных и человека.

Во многих районах нашей страны – на Урале и Алтае, в Приморье и в Ростовской области количество иода в почве и в воде значительно снижено. Если человек не получает с пищей нужного количества иода, у него снижается синтез тироксина. Щитовидная железа, пытаясь компенсировать нехватку гормона, разрастается, что приводит к образованию так называемого эндемического зоба. Особенно тяжелые последствия от недостатка иода возникают у детей. Сниженное количество тироксина приводит к резкому отставанию в умственном и физическом развитии.

Чтобы предотвратить заболевания щитовидной железы, врачи рекомендуют подсаливать пищу специальной солью, обогащенной иодидом калия, употреблять рыбные блюда и морскую капусту.

Почти 2 тысячи лет назад правитель одной из северо-восточных провинций Китая издал указ, в котором обязал всех своих подданных съедать по 2 кг морской капусты в год. С тех пор жители послушно соблюдают древний указ, и, несмотря на то, что в этом районе существует явный недостаток иода, население не страдает заболеваниями щитовидной железы.

Вопросы для повторения и задания

1. В чем заключается сходство биологических систем и объектов неживой природы?

2. Перечислите биоэлементы и объясните, каково их значение в образовании живой материи.

3. Что такое микроэлементы? Приведите примеры и охарактеризуйте биологическое значение этих элементов.

4. Как отразится на жизнедеятельности клетки и организма недостаток какого-либо микроэлемента? Приведите примеры таких явлений.

5. Расскажите об ультрамикроэлементах. Каково их содержание в организме? Что известно об их роли в живых организмах?

6. Приведите примеры известных вам биохимических эндемий. Объясните причины их происхождения.

2.3. Неорганические вещества клетки

Вспомните!

Что такое неорганические вещества?

Назад Дальше