Вода, которую мы пьем - Ахманов Михаил Сергеевич 7 стр.


Можно констатировать факт, что вопрос с надежным и не порождающим вторичных загрязнений обеззараживанием питьевой воды еще не разрешен, но это проблема не Петербурга, Москвы или Парижа, а всего мирового сообщества. Что же до наших вод, то в санэпиднадзоре мне сказали, что слухи о микробиологическом загрязнении невской воды несколько преувеличены. Так, например, человек, который не соблюдает правил гигиены, не моет руки, ест подозрительные продукты, получает в результате гораздо больше микробов, чем с водой. Но все-таки мы их получаем из воды, из воздуха и с продуктами, и тогда закономерен вопрос: почему же нет эпидемий? Видимо, потому, что наша иммунная система еще справляется с этой напастью.

В заключение главы я хотел бы дополнительно сообщить читателям сведения, взятые из [6]. А именно: самые жуткие яды (вроде акриламида, бенз(а)пирена и некоторых убийственных пестицидов) относятся к первому классу опасности; во второй класс входят кадмий, свинец, кобальт, барий, молибден, алюминий, стронций, бензол, ДДТ, хлороформ; в третий класс – хром, титан, никель, ванадий, марганец, железо, медь, цинк, ацетон, нитраты; [16] в четвертый – фенол. Эта краткая информация, а также сведения из приложения 2 позволят вам сориентироваться в жизни и не бояться зря; случается, мы вдыхаем пары ацетона, полощем горло марганцовкой и уж наверняка едим огурцы с нитратами. Однако не умираем.

Глава 4 Очистка питьевой воды в домашних условиях и классификация бытовых фильтров

Собственно, мы должны рассмотреть не очистку, а доочистку питьевой воды, которую еще называют финишной очисткой , или очисткой «на кране». Основная очистка вод природных источников производится водопроводными станциями. Мы можем предполагать, что эта очистка вполне приличная (например, в Петербурге) или не слишком качественная. Но в любой ситуации вода, обработанная на ВС, пропутешествует по водопроводным трубам, поэтому финишную очистку проводить желательно, а иногда просто необходимо.

О качественной очистке питьевой воды на петербургских ВС заявляют компетентные лица, например Ф.В. Кармазинов, руководитель ГУП «Водоканал» Санкт-Петербурга [16]. Конечно, директор «Водоканала» – персона заинтересованная, но хорошее качество очистки невских вод подтверждают и другие лица, с которыми я контактировал: Н.В. Боровков, заведующий отделением Центра горсанэпиднадзора, С.В. Холодкевич, заведующий лабораторией НИЦ экологической безопасности РАН, а главное – В.Я. Сквирский, известный специалист по воде, основатель ЗАО «ЭКО-АТОМ», которое производит уникальные фильтры (интервью, взятое у него тележурналистом Чернядьевым осенью 2001 г., видели многие петербуржцы). Сквирский, однако, напоминал о загрязнении природной воды и вторичном загрязнении в трубах воды очищенной, но с последним фактом согласен и директор «Водоканала» – тайны тут никакой нет.

Поскольку москвичей, петербуржцев и жителей всех остальных регионов России интересует не вода на выходе из ВС, а вода в их кране, я не буду описывать централизованные работы по очистке воды, фильтрацию через слои песка и глины, отстаивание, химическую обработку воды хлором и флокулянтами (соединениями алюминия) и прочие процедуры. Ниже мы ознакомимся с тремя наиболее важными для нас вопросами, связанными с холодной питьевой водой «на кране»:

– как улучшить ее качество без фильтра;

– какие существуют методы для очистки воды с помощью специальных материалов и устройств;

– какие бытовые фильтры нам предлагают производители.

Итак, начнем с первого вопроса.

Простые способы очистки воды

Существует несколько простых способов повышения качества воды. Я изложу их, опираясь на рекомендации упомянутых выше специалистов Н.В. Боровкова и С.В. Холодкевича, а также на личный опыт и литературные источники. Эти способы таковы: слив застоявшейся воды, ее отстаивание и кипячение.

Слив застоявшейся воды. Как уже неоднократно упоминалось, воду для питья лучше набирать впрок в количестве 5—10 л вечером, в период максимального водозабора, когда вода не застаивается в трубах. Естественно, набирать воду нужно лишь в том случае, если она имеет нормальный вид: не очень сильно пахнет и относительно прозрачна. Если в вечерние часы вдруг потекла вода вонючая, мутная или желтая от ржавчины, это свидетельство аварии в системе централизованного водоснабжения, и такую воду брать не следует. Не советую пропускать ее через фильтр: картриджи быстро придут в негодность. Лучше дождитесь ликвидации прорыва, а воду купите в магазине.

Отстаивание воды. Воде, набранной вечером, нужно дать отстояться за ночь – лучше всего в закрытой стеклянной, керамической или эмалированной емкости, но не в алюминиевой или стальной кастрюле. Затем (если вы сильно озабочены проблемой тяжелых металлов) можно произвести такую операцию: гибкую трубку осторожно (чтобы не взболтнуть жидкость) вводят в сосуд с водой – так, чтобы ее конец располагался у самого дна. Засасывают первую порцию воды, после чего она начинает литься из трубки в раковину, и сливают примерно треть отстоявшейся воды. Обратите внимание, что сливается нижняя треть, в которую за время отстаивания опустились примеси тяжелых металлов. Полностью вы их таким образом не удалите, но концентрацию в оставшейся воде уменьшите. Слив треть воды, проверьте, нет ли осадка на дне. Если есть, поднимите сосуд с водой (опять же осторожно, чтобы не взболтнуть) и перелейте воду в другую емкость, пропустив ее через сложенную вдвое-вчетверо марлю. Остаток воды с осадком выплесните в раковину.

Кипячение воды. Воду прокипятите в эмалированном чайнике или кастрюле. Кипячение убивает микроорганизмы, и одновременно с паром из воды уходит практически вся летучая хлорорганика (последствия дезинфекции воды хлором). Однако следует помнить, что некоторые микробы и вирусы выживают в кипящей воде минуты и даже часы и что летучей хлорорганике нужно куда-то испаряться, а не задерживаться крышкой. Поэтому кипятите воду в сосуде без крышки и не менее 5–7 мин. Существует мнение, что кипячение сокращает объем воды, и в результате сильно повышается концентрация тяжелых металлов. Это нелепость: за 5–7 мин не выкипит даже десятая часть первоначального объема.

Обработанную таким образом воду нужно закрыть крышкой, чтобы не проникали бактерии из воздуха, остудить и, если угодно, разлить в трехлитровые стеклянные банки, плотно закрыв их полиэтиленовыми крышками. Хранить воду лучше в холодильнике.

Методы очистки воды с помощью специальных материалов и устройств

Традиционных способов имеется три: механический, ионообменный и сорбционный .

Механический способ фильтрации. Для начала представим себе кастрюлю, накрытую марлей, через которую мы пропускаем воду. Это простейший механический фильтр, но что он остановит? Мусор миллиметрового размера… К тому же, хотя поверхность марли велика (например, один квадратный метр), работает только та ее часть, куда падает поток воды (допустим, сечением один квадратный сантиметр), и эта частица поверхности быстро засоряется. Разумеется, мы знаем, как поступить: сложим марлю вдвое, вчетверо, в восемь раз – теперь работают 8 см2 поверхности, фильтр стал плотнее, он задерживает частицы размером 0,1 мм, или 100 мкм, но быстрее засоряется и поток воды через него течет медленнее.

Но если нас интересует качество фильтрации, а не скорость, нужно, чтобы работала вся поверхность марли. С этой целью скомкаем ее и запихнем в пластмассовый цилиндр сечением 1 см2, через который и будем пропускать струю воды. В малом объеме цилиндрика вроде бы работает вся поверхность марли и задерживает частицы в 10 мкм. Но у этого способа есть недостатки: во-первых, резко снизилась скорость фильтрации; во-вторых, работает все же не полная поверхность марли, а верхние слои быстро забиваются примесями и не пропускают воду к средним и нижним слоям. Увеличим напор воды, таким образом, вода будет с силой продавливаться через всю поверхность марлевого фильтра. Но прогнав литров пять жидкости, мы заметим, что качество фильтрации падает: марля забита, и сильный поток воды не очищается, а вымывает из нее мелкий мусор. Нужно вытащить марлю и очистить ее.

На этом простом примере я продемонстрировал ряд проблем, возникающих при механическом способе фильтрации:

– необходимость уменьшить ячейки сетки или поры фильтрующего материала, чтобы фильтрация была качественной;

– необходимость создать в малом объеме фильтра большую рабочую поверхность, чтобы фильтр мог пропустить побольше жидкости (то есть имел большой ресурс);

– зависимость скорости фильтрации от плотности фильтрующего материала и давления воды;

– неизбежное засорение фильтра (исчерпание его ресурса);

– необходимость уловить момент засорения фильтра и либо заменить фильтр новым, либо очистить (регенерировать) его.

Наконец, последняя неприятность: представим, что, складывая марлю, мы можем добиться таких показателей фильтра, что через него не проходят частицы размером в несколько ангстрем – то есть молекулы, атомы, ионы. Казалось бы, прекрасно – мы задержим взвесь, бактерии, вирусы, всю органику и пресловутые ионы тяжелых металлов! А что мы получим на выходе? Может быть, ничего, если молекулы воды тоже не пройдут через наш фильтр, а в лучшем случае – «акву дистиллята», без необходимых нам макро– и микроэлементов! Ведь ионы натрия, магния, калия, кальция, хлора и все остальное, что делает воду питьевой водой , имеют такие же размеры, как ионы тяжелых металлов. В общем, несложно сделать фильтр, который бы все задерживал, но сконструировать такой, который бы задерживал ненужное, а нужное пропускал, – вот проблема!

Но давайте не будем торопиться с ее решением, а закончим с механической фильтрацией. Вам уже ясно, что это фильтрация через сито или сетку, то есть через инертную среду с определенным размером отверстий или пор, не пропускающих более крупные, чем эти отверстия, частицы. В качестве фильтрующего материала используется, конечно, не марля, а полипропиленовое волокно – в виде блока-картриджа, который подлежит замене по истечении его ресурса.

В зависимости от того, частицы какого размера могут быть задержаны, механическую фильтрацию делят на:

– ультрафильтрацию (задерживается 95 % частиц размером 0,2–0,5 мкм);

– два класса микрофильтрации (задерживается 95 % частиц размерами 0,5–5 и 5—15 мкм);

– два класса макрофильтрации (задерживается 95 % частиц размерами 15–50 и более 50 мкм).

Следовательно, механический фильтр способен, в принципе, задерживать крупные и мелкие частицы взвеси, бактерии и, с некоторой вероятностью успеха, вирусы и крупные органические молекулы. Что касается газов, металлов, хлорорганики и так далее, то они ему не по плечу; борьба с ними – не его задача.

Макрофильтрация обычно используется в предфильтрах, патроны которых врезают в водопроводную трубу на входе ее в квартиру, чтобы очистить воду от крупных частиц; тут можно поставить два предфильтра, на холодную и горячую воду, [17] и можно, разумеется, закладывать в патроны картриджи для микрофильтрации. Естественно, если такой картридж с очень мелкими порами (0,5–1 мкм), то он быстро засорится; оптимальный размер – 5 мкм. А вот в системе доочистки перед самым краном может присутствовать модуль микрофильтрации с размером пор 0,5–1 мкм, если в квартире установлен предфильтр. Если же его нет, то в систему перед краном можно установить два картриджа с порами 5 мкм и 0,5–1 мкм.

Теперь уместно поговорить о фильтрах, основанных на явлении осмоса и обратного осмоса, так как в них, по сути дела, реализуется такая же процедура очистки, как в механических фильтрах, только на молекулярном уровне. Твердое тело является очень мелкой природной сеткой, так как между атомами есть пустоты размером в несколько ангстрем. Но эта сетка трехмерная и исключительно плотная, она не пропускает ничего. Однако представьте, что мы изготовили пленку-мембрану толщиной в один атом или молекулу, а реально – во много молекулярных слоев, но все-таки весьма тонкую, от 1 мм до 0,1 мм или еще тоньше. В этой пленке между молекулами будут «отверстия-поры», причем очень маленькие, гораздо меньше, чем в механических фильтрах. Питьевая вода состоит из молекул H2O и множества молекул и ионов примесей, и все они имеют хотя и малые, но разные размеры. Если процеживать воду через мембрану (точно так же, как мы это делали через марлю), то пройдут небольшие молекулы H2O и близкие к ним по величине, а более крупные будут задержаны. Это и есть принцип осмотической, или мембранной, фильтрации.

Чтобы разобраться с ним окончательно, я опишу классический опыт французского физика Нолле, открывшего явление осмоса в 1748 г. Представьте цилиндр размером с обычный стакан, открытый с обоих концов; один конец (дно) затягиваем пленкой из бычьего пузыря, наливаем в цилиндр раствор сахара в воде и погружаем его дном в сосуд с чистой водой. Большие молекулы сахара не могут пройти сквозь материал пузыря, а молекулы воды проходят, и мы наблюдаем, как изменяется уровень жидкости в цилиндре. Бычий пузырь в данном случае является полупроницаемой мембраной.

В наше время такие мембраны изготавливают из полимерных и керамических материалов, и, в зависимости от размера пор, с их помощью осуществляется:

– обратный осмос;

– нанофильтрация; [18]

– ультрафильтрация;

– микрофильтрация.

Самая мелкая «сетка» (обратный осмос) пропускает лишь молекулы воды, и в результате мы получаем нечто близкое к воде дистиллированной. При нанофильтрации задерживаются взвеси, микрофлора (включая вирусы), любая органика и частично ионы натрия, кальция и магния; при ультрафильтрации – взвеси, микрофлора и крупные органические молекулы; при микрофильтрации – взвеси и бактерии. Этот способ фильтрации применяется прежде всего для удаления бактериологических и органических загрязнений (в том числе – хлорорганики), а также обессоливания воды (в случае обратного осмоса). Разумеется, можно сочетать в фильтре несколько мембран одного или разных типов и комбинировать мембранный фильтр с другими – например, с работающими по принципу ионного обмена. В дальнейшем я почти не буду касаться мембранной фильтрации, так как эти фильтры дороги и рассчитаны скорее на коллективное, чем индивидуальное применение.

Перейдем к очень распространенному методу сорбционной фильтрации. Сорбцией называется поглощение растворенных в воде веществ поверхностью твердого сорбента, в данном случае – материала, наполняющего фильтр. От механической фильтрации этот процесс отличается тем, что материал механического фильтра инертен, а сорбционного – активен: он захватывает примеси и удерживает их силами молекулярного притяжения. Разумеется, тут возникают такие проблемы, как с марлей: чтобы сорбент работал эффективно, его поверхность при малом объеме должна быть велика. Как этого добиться?

Давайте рассмотрим такой пример. Пусть у нас имеется стеклянная пластина размером 10x10 см и толщиной 1 см. Ее объем равен 100 см3, а полная площадь поверхности (сверху, снизу и с боков) – 240 см2; таким образом, отношение S/V (поверхности к объему) составляет 2,4. Разрежем пластину на 100 кубиков по 1 см; их суммарный объем не изменился, но суммарная поверхность теперь равна 600 см2, а S/V = 6. Если мы возьмем молоток и раздробим стеклянные кубики на более мелкие частички, то их объем опять-таки не увеличится, а общая поверхность станет гораздо больше. Отсюда вывод: чтобы при заданном объеме (например, величиной с кулак) поверхность сорбента была велика, он должен состоять из мелких частиц.

Как можно дополнительно увеличить эту поверхность? Стекло – плотный материал, практически без пор, но мы можем взять субстанцию рыхлую, пористую – скажем, уголь. В каждой частице угля размером 1 мм имеется множество внутренних пор, незаметных глазу, но значительно увеличивающих его поверхность. Прекрасный материал для наших целей! Во-первых, не ядовит и легко дробится в порошок, во-вторых, захватывает и складирует на своей поверхности (в основном в порах) различные примеси, а в-третьих, его можно активировать. Активация – особая процедура, в результате которой различных пор, диаметром от 20–30 до 1000 ангстрем и еще крупнее, становится гораздо больше. Их так много, что полная поверхность 1 г активированного угля, производимого отечественными и зарубежными фирмами, равна 800—1500 м2!

Сорбционные фильтры удаляют из воды хлорорганику (хлороформ, четыреххлористый углерод, бромдихлорметан и другие вещества), а также тяжелые металлы (железо, свинец и др.), взвесь, бактерии и, в пределах своих возможностей, вирусы. Вполне понятно, что при фильтрации загрязненной воды примеси, осевшие в порах, забивают их, и спустя некоторое время, определяемое сорбционной способностью фильтра, его необходимо заменить. К тому же уловленные фильтром микроорганизмы никуда не исчезают и даже более того – они способны размножаться в фильтрующем материале. Чтобы этого не случилось, требуются специальные меры. Еще один важный момент: необходимо, чтобы вода проходила через угольный фильтр с небольшой скоростью (примерно один стакан в минуту на 100 г угля), иначе качественной очистки не получится.

Назад Дальше