Теория игр. Искусство стратегического мышления в бизнесе и жизни - Авинаш Диксит 10 стр.


Глава 3

Решение дилеммы заключенных

Много контекстов – одна концепция

Что общего между следующими ситуациями?

• Две заправочные станции или два супермаркета, расположенных в непосредственной близости друг от друга, время от времени начинают жесткие ценовые войны между собой.

• Во время предвыборной кампании как Демократическая, так и Республиканская партия США часто придерживаются центристской политики, пытаясь привлечь на свою сторону избирателей, не определившихся со своими предпочтениями; при этом они игнорируют основных сторонников, придерживающихся крайних левых и крайних правых взглядов.

• «Разнообразие и продуктивность рыбного промысла в Новой Англии достигли беспрецедентного уровня. Однако сформировавшаяся за прошедшее столетие тенденция чрезмерного промысла привела к вымиранию одного вида рыбы за другим. Атлантический палтус, морской окунь, треска, желтохвостая камбала… пополнили ряды тех видов, которые считаются сейчас вымершими с точки зрения коммерческого промысла»[26].

• В конце известного романа Джозефа Хеллера Catch-22{41} Вторая мировая война уже почти завершилась. Йоссариан не хочет быть среди тех, кто погибнет последним: это уже никак не повлияет на исход войны. Он объясняет это майору Денби, старшему по званию офицеру. Денби спрашивает его: «Но, Йоссариан, представь себе, что получится, если каждый американец станет рассуждать подобным образом?» Йоссариан отвечает ему: «Только круглый дурак рассуждает иначе. Разве я не прав?»[27].


Ответ: все это примеры дилеммы заключенных{42}. Как и во время допроса Дика Хикока и Перри Смита (героев романа «Хладнокровное убийство», о которых шла речь в главе 1), у каждого участника игры есть свои причины сделать то, что повлечет за собой неблагоприятные последствия для обоих, поскольку каждый из них отслеживает только собственные интересы. Если один признается в совершении преступления, другому тоже лучше признаться, чтобы избежать сурового приговора; если один решит воздержаться от признания, другой сможет значительно облегчить свою участь, если признается. В действительности заключенные испытывают в подобной ситуации настолько сильное давление, что у них появляется желание признать свою вину независимо от того, виновны они (как в романе «Хладнокровный убийца») или невиновны, но полиция сфабриковала против них дело (как в фильме «Секреты Лос-Анджелеса»).

То же самое происходит и с ценовыми войнами. Если автозаправочная станция Nexon назначит низкую цену, Lunaco тоже лучше снизить цены, чтобы не потерять клиентов; если Nexon берет высокую цену за свой бензин, Lunaco может привлечь многих покупателей на свою сторону, снизив цену. Но если обе заправочные станции будут продавать бензин по низкой цене, ни одна из них ничего не заработает (хотя клиентам такая цена только на руку).

Если демократы примут предвыборную платформу, ориентированную на сторонников центристской политики, республиканцы рискуют потерять всех этих избирателей, а значит, и проиграть выборы, если будут работать только со своими основными сторонниками из числа борцов за экономические и социальные права; если демократы станут опекать только своих основных сторонников из числа представителей национальных меньшинств и профсоюзов, тогда республиканцы смогут привлечь на свою сторону умеренных избирателей, а значит, победить в выборах со значительным перевесом голосов, придерживаясь более центристской позиции.

Если все рыболовы будут ловить рыбу в умеренных количествах, большой улов одного рыболова не истощит рыбные ресурсы; если же все остальные начнут активно увеличивать промысел, тогда любой отдельный рыболов поступил бы глупо, пытаясь в одиночку охранять рыбные ресурсы[28]. В итоге происходит чрезмерный вылов рыбы и некоторые виды вымирают.

В романе «Уловка-22» именно логика Йоссариана делает таким трудным дальнейшее участие в уже проигранной войне.

Немного истории

Как специалисты по теории игр изобрели и назвали эту игру, которая охватывает так много аспектов экономического, политического и социального взаимодействия? Это произошло еще на начальном этапе истории развития дисциплины. Гарольд Кун, который и сам был одним из пионеров теории игр, рассказал об этом на симпозиуме, который проводился в рамках церемоний вручения Нобелевской премии за 1994 год.

Весной 1950 года Альберт Такер, будучи в отпуске, приехал в Стэнфорд, а поскольку там не хватало кабинетов, его разместили в кабинете кафедры психологии. Однажды кто-то из психологов постучал к нему в дверь и спросил, чем он занимается. Такер ответил: «Я работаю над теорией игр». Психолог спросил, не согласится ли он провести семинар по этой теме. Для этого семинара Такер и придумал дилемму заключенного в качестве примера, иллюстрирующего теорию игр, равновесие Нэша, а также парадоксы, сопутствующие равновесиям, нежелательным с точки зрения общества. Поскольку это был поистине фундаментальный пример, он стал темой десятков научных работ и ряда серьезных книг[29].

Другие ученые рассказывают несколько иную историю. По их мнению, математическая структура игры была описана еще до Такера двумя математиками – Меррилом Фладом и Мелвином Дрешером из Rand Corporation (исследовательский центр, который был в свое время оплотом холодной войны)[30]. Гениальность Такера заключалась в том, что он придумал историю, иллюстрирующую математические выкладки. И это действительно было гениально, поскольку подача идеи может решить ее судьбу: запоминающаяся презентация способствует быстрому распространению идеи среди мыслящих людей, тогда как скучная и сухая – может привести к тому, что идея не получит должного внимания или вообще будет забыта.

Визуальное представление

Мы проиллюстрируем метод решения этой игры примером из бизнеса. Две конкурирующие компании посылочной торговли – Rainbow’s End и B. B. Lean – специализируются на торговле одеждой. Каждую осень они печатают и рассылают зимние каталоги. Обе компании должны придерживаться тех цен, которые указаны в их каталогах, на протяжении всего зимнего сезона. Период подготовки каталогов гораздо более продолжителен, чем окно для их рассылки, поэтому обе компании должны принимать решения о ценах одновременно, не имея никакой информации о решениях конкурента. В обеих компаниях знают, что их каталоги рассчитаны на общую аудиторию потенциальных покупателей, которые умеют делать покупки с умом и ищут низкие цены.

Как правило, в обоих каталогах публикуется практически идентичный ассортимент товаров. Предположим, один из таких товаров – рубашка из высококачественной ткани шамбре. Такая рубашка обходится каждой компании в 20 долларов{43}. По оценкам обеих компаний, если каждая из них назначит за этот товар цену 80 долларов и продаст 1200 единиц, это обеспечит прибыль в размере (80–20) × 1200 = 72 000 долларов. Кроме того, оказалось, что это наилучшая цена для обеих компаний: если они смогут договориться о том, чтобы назначить одинаковую цену, 80 долларов – это та цена, которая обеспечит обеим максимальную прибыль.

В каждой из компаний подсчитали, что если одна из них снизит цену на 1 доллар, а другая оставит ее неизменной, то компания, снизившая цену, привлечет 100 покупателей: 80 покупателей, перешедших от другой компании, и 20 новых (например, тех, кто решил приобрести рубашку, которую не стали бы покупать по более высокой цене, или покупателей, пожелавших заказать товар по каталогу, вместо того чтобы покупать его в местном торговом центре). Таким образом, у каждой компании есть соблазн назначить более низкую цену, чтобы привлечь больше покупателей. Цель всей этой истории – разобраться в том, чем может обернуться такое решение.

Начнем с предположения о том, что обеим компаниям предстоит выбрать одну из двух цен: 80 и 70 долларов{44}. Если одна компания снизит цену до 70 долларов, а другая оставит цену 80, первая компания привлечет на свою сторону 1000 покупателей, тогда как вторая потеряет 800. Следовательно, компания, снизившая цену, продаст 2200 рубашек, а у другой компании объем продаж сократится до 400 единиц; прибыль составит (70–20) × 2200 = 110 000 долларов у компании, снизившей цену, и (80–20) × 400 = 24 000 – у другой компании.

Что произойдет, если обе компании одновременно снизят цену до 70 долларов? При снижении цены на 1 доллар у компаний останутся имеющиеся покупатели и появятся по 20 новых. Следовательно, если обе компании снизят цену на 10 долларов, каждая из них продаст на 10 × 20 = 200 единиц товара больше предыдущих 1200 единиц. Таким образом, каждая компания продаст по 1400 единиц товара и получит прибыль в размере (70–10) × 1400 = 70 000 долларов.

Представим возможную прибыль обеих конкурирующих компаний в наглядном виде. Мы не можем использовать для этого дерево игры наподобие тех деревьев, которые приведены в главе 2. В данном примере два игрока действуют одновременно. Ни один из них не может сделать очередной ход, опираясь на информацию о том, что сделал другой игрок или какой ответный ход он может предпринять. Вместо этого каждый игрок должен анализировать, о чем в это же время думает другой игрок. Отправная точка для таких «рассуждений о рассуждениях» состоит в том, чтобы отобразить в наглядном виде все последствия каждой комбинации возможных вариантов выбора, который могут одновременно сделать обе компании. Поскольку у каждой из них только одна альтернатива: 80 или 70 долларов, это значит, что существует четыре возможные комбинации. Проще всего отобразить их в виде таблицы, состоящей из столбцов и строк, которую мы будем называть таблицей игры, или таблицей выигрышей. Выбор Rainbow’s End (сокращенно RE) будет отображен в строках этой таблицы, а выбор B. B. Lean (BB) – в столбцах. В каждой из четырех ячеек таблицы, соответствующих каждому выбору RE в строке и BB в столбце, содержатся две цифры, обозначающие прибыль каждой компании от продажи рубашки (в тысячах долларов). Цифра, расположенная в левом нижнем углу ячейки, соответствует тому игроку, для которого выделены строки; цифра в правом верхнем углу ячейки – игроку, для которого выделены столбцы{45}. На языке теории игр эти цифры называются выигрышем{46}. Для того чтобы внести полную ясность в то, какие выигрыши соответствуют каждому из игроков, в представленной таблице соответствующие фрагменты ячеек выделены разными оттенками серого цвета.



Прежде чем приступить к поиску решения этой игры, мы хотели бы обратить ваше внимание на один ее аспект. Сравните пары выигрышей в четырех ячейках. Лучший результат для RE не всегда означает худший результат для ВВ, и наоборот. В частности, для обеих компаний ситуация в левой верхней ячейке лучше, чем в правой нижней. В конце этой игры не обязательно должен быть победитель и проигравший: это не игра с нулевой суммой. В главе 2 мы уже говорили о том, что инвестиционная игра Чарли Брауна тоже не относится к категории игр с нулевой суммой, как и большинство игр, с которыми мы сталкиваемся в реальной жизни. Во многих играх, таких как дилемма заключенных, главный вопрос заключается в том, как избежать проигрыша или добиться выигрыша обеих сторон.

Дилемма

Проанализируем ход рассуждений менеджера компании RE. «Если ВВ выберет 80 долларов, я могу получить 110 тысяч долларов вместо 72 тысяч, снизив цену до 70 долларов. Если ВВ выберет 70 долларов, мой выигрыш составит 70 тысяч, если я тоже назначу эту цену, и только 24 тысячи долларов, если я оставлю цену 80. Для меня более выгодный вариант (в действительности самый выгодный, поскольку у меня только одна альтернатива) остается неизменным, что бы ни решили в ВВ. Следовательно, мне вообще не нужно думать о том, что думают они; мне просто нужно первым назначить цену 70 долларов».

Если в игре с параллельными ходами есть такое свойство (а именно оптимальный выбор игрока не зависит от выбора других игроков), это существенно упрощает рассуждения игроков, а также анализ, который делают специалисты по теории игр в подобных случаях. Следовательно, наличие такого свойства существенно упрощает решение игры. Специалисты по теории игр обозначают его термином «доминирующая стратегия». Говорят, что у игрока есть доминирующая стратегия, если эта стратегия лучше всех остальных стратегий независимо от того, какую стратегию или сочетание стратегий выберет другой игрок или игроки. Существует простое правило участия в играх с параллельными ходами{47}:

ПРАВИЛО № 2: если у вас есть доминирующая стратегия, примените ее.

Дилемма заключенных – еще более специфичная игра: в ней доминирующая стратегия есть не у одного, а у обоих игроков (или у всех игроков). Менеджер компании ВВ рассуждает точно так же, как менеджер RE; для того чтобы хорошо усвоить эту идею, вы должны самостоятельно проанализировать ход рассуждений менеджера ВВ. Сделав это, вы увидите, что цена 70 долларов – это доминирующая стратегия и для компании ВВ.

Результат применения такой стратегии отображен в правой нижней ячейке таблицы игры: обе компании назначают цену 70 долларов и получают прибыль по 70 тысяч долларов каждая. Необходимо обратить внимание на следующий аспект дилеммы заключенных, который делает ее настолько важной игрой. Когда каждый из игроков применяет свою доминирующую стратегию, оба получают худший результат по сравнению с тем, что они получили бы, если бы доверились друг другу и договорились о том, что каждый выберет другую, доминируемую стратегию. В нашем примере это означало бы, что каждая компания назначит на свой товар цену 80 долларов, для того чтобы получить результат, отображенный в верхней левой ячейке матрицы игры, а именно прибыль в размере 72 тысячи долларов{48}.

Для этого было бы недостаточно, чтобы только одна компания назначила на свой товар цену 80 долларов: это повлекло бы за собой очень плохие последствия для этой компании. Так или иначе, обе компании должны назначить высокую цену, чего очень трудно добиться на практике, учитывая существующий у каждой из них соблазн назначить более низкую цену, чем у конкурента. Если обе компании будут преследовать свои эгоистические интересы, они не смогут получить наилучший результат для них обеих. Такой вывод противоречит тому, чему учат нас классические экономические теории, начиная с теории Адама Смита{49}.

Это вызывает ряд вопросов, часть которых связана с более общими аспектами теории игр. Что произойдет, если доминирующая стратегия будет только у одного участника игры? Что если ни у одного игрока не окажется доминирующей стратегии? Если оптимальный выбор каждого игрока зависит от того, что в это же время выбирает другой игрок, могут ли они разгадать выбор друг друга и найти решение этой игры? Мы проанализируем ответы на эти вопросы в следующей главе, в которой рассматривается более общий подход к решению игр с параллельными ходами, а именно равновесие Нэша. В данной главе сосредоточимся на решении дилеммы заключенных.

В обобщенном описании дилеммы заключенных две стратегии, имеющиеся в распоряжении каждого игрока, обозначаются так: «сотрудничать» и «предать» (или в некоторых случаях – «обмануть»); мы будем придерживаться именно этих терминов. Предательство – это доминирующая стратегия для каждого игрока; если оба игрока выберут эту стратегию, их выигрыш будет меньше, чем в случае выбора стратегии сотрудничества.

Предварительные соображения по поводу решения дилеммы заключенных

У игроков, столкнувшихся с дилеммой заключенных, есть веские основания для достижения договоренности о совместных действиях, которые позволили бы уйти от ее решения. Например, в Новой Англии рыболовы могут согласиться на ограничение улова ради сохранения рыбных ресурсов на будущее. Проблема состоит только в том, как обеспечить выполнение таких договоренностей в условиях, когда каждая сторона испытывает соблазн обмануть другую (например, выловить рыбы больше, чем позволяет квота). Что говорит теория игр по этому поводу? И что происходит в таких случаях в реальной жизни?

С тех пор как дилемму заключенных сформулировали впервые, прошло более пятидесяти лет. За это время были усовершенствованы теоретические основы этой дилеммы, а также накоплен большой объем данных, полученных как в процессе наблюдений за тем, что происходит в реальной жизни, так и в ходе лабораторных экспериментов. Давайте проанализируем этот материал и посмотрим, какие уроки мы можем из него извлечь.

У стратегии сотрудничества есть обратная сторона: стремление избежать предательства. Игрока можно заинтересовать в том, чтобы он выбрал стратегию сотрудничества вместо доминирующей стратегии предательства, пообещав ему достаточное вознаграждение. Кроме того, его можно удержать от применения стратегии предательства с помощью адекватного наказания.

Метод вознаграждения проблематичен по нескольким причинам. Вознаграждение может носить внутренний характер: один игрок платит другому за выбор стратегии сотрудничества. В иных случаях вознаграждение может быть внешним: третья сторона, заинтересованная в сотрудничестве между двумя игроками, платит им за выбор этой стратегии. Как бы там ни было, вознаграждение нельзя предоставлять игроку, пока он не сделает свой выбор, в противном случае он просто положит его себе в карман, после чего откажется выполнять договоренность. С другой стороны, если вознаграждение просто обещают, игрок может не поверить этому обещанию: когда он выберет стратегию сотрудничества, не исключено, что тот, кто дал это обещание, нарушит его.

Назад Дальше