На первый взгляд, право налагать вето на отдельные статьи законопроекта только укрепит власть президента и ни при каких обстоятельствах не приведет к негативным последствиям. Тем не менее существуют ситуации, в которых президенту лучше было бы обойтись без такого инструмента. Дело в том, что наличие у президента права выборочного вето повлияет на стратегию принятия законов, которой придерживается Конгресс. Простая игра покажет, как именно это может произойти.
Применительно к данной теме суть ситуации, сложившейся в 1987 году, сводилась к следующему. Предположим, на рассмотрение представлены две статьи расходов: модернизация городов («М») и система противоракетной обороны («П»). Конгрессу больше нравилось первое, тогда как президенту – второе. Тем не менее и Конгресс, и президент предпочли включить в законопроект обе эти статьи, а не сохранять статус-кво. В таблице отображена оценка возможных сценариев развития событий в случае двух игроков (4 – самая высокая оценка, 1 – самая низкая).
Дерево игры при условии, что у президента нет права выборочного вето, изображено на рисунке. Президент подпишет законопроект, в котором будут предусмотрены обе статьи – как М, так и П – или в котором будет только статья П, но наложит вето на законопроект, если в него будет включена только статья М. Зная об этом, Конгресс выбирает вариант с включением обеих статей. Мы снова показываем выбор, сделанный в каждом узле дерева, обозначив соответствующие варианты жирными линиями со стрелками. Обратите внимание: мы делаем это во всех тех точках, в которых президенту предположительно придется делать выбор, хотя некоторые варианты выбора поставлены под вопрос предыдущими решениями Конгресса. Дело в том, что выбор Конгресса в значительной мере зависит от анализа возможных шагов президента в случае, если бы Конгресс отдал предпочтение другому варианту. Для того чтобы проиллюстрировать эту логику, необходимо отобразить действия президента во всех возможных ситуациях.
Анализ этой игры позволяет сделать следующий вывод: в данном случае обе стороны посчитают нужным выбрать второй предпочтительный вариант (оценка 3).
Теперь предположим, что у президента есть право выборочного вето. В этом случае дерево игры будет выглядеть так:
При этом Конгресс делает такой прогноз: в случае принятия обеих статей президент наложит вето на статью М и оставит только статью П. Следовательно, для Конгресса лучше всего либо принять только М и увидеть, как президент налагает вето на эту статью, или не принимать обе статьи. Возможно, Конгресс отдаст предпочтение первому варианту развития событий, если сможет извлечь политическую выгоду из вето президента. С другой стороны, президент тоже может извлечь для себя политическую выгоду из такого поддержания бюджетной дисциплины. Предположим, оба варианта уравновешивают друг друга, а это значит, что у Конгресса нет особых предпочтений в отношении того или иного выбора. Однако оба варианта дают каждой из сторон возможность получить результат, занимающий только третье место (оценка 2). Следовательно, даже президент может оказаться в затруднительном положении из-за наличия дополнительной свободы выбора[14].
Эта игра иллюстрирует важный концептуальный момент. В ситуации, когда решения принимает один человек, наличие большей свободы действий не принесет никакого вреда. Но в играх дополнительная свобода действий может навредить, поскольку способна повлиять на поведение других участников игры. Более того, связывание ваших же рук иногда идет на пользу. Такое «преимущество обязательства» рассматривается более подробно в главах 6 и 7.
Мы применили метод обратных рассуждений в очень простой игре (Чарли Браун), а затем использовали его в более сложной игре (выборочное вето). Основной принцип остается неизменным независимо от уровня сложности игры. Однако если речь идет об играх, в которых у каждого игрока в каждой точке принятия решений существует несколько вариантов выбора, дерево игры может очень быстро стать настолько сложным, что его будет трудно строить или использовать. Так, например, в шахматах из корневой вершины исходит 20 ветвей: шахматист, играющий белыми фигурами, может или передвинуть каждую из своих пешек на одну или две клетки, или сделать ход конем в одном из двух направлений. На каждый из этих ходов шахматист, играющий черными фигурами, может ответить 20 ходами. Следовательно, уже на этом уровне у нас имеется 400 разных путей. Число ветвей, исходящих из узлов на следующих уровнях, еще больше. Полное решение шахматной партии посредством построения дерева игры не под силу даже самому мощному компьютеру из всех, которые существуют в наше время или могут быть созданы в ближайшие несколько десятилетий. Следовательно, в таких случаях необходимо применять другие методы, такие как метод частичного анализа. Далее мы расскажем о том, как шахматисты решили эту проблему.
Между этими двумя крайними уровнями находятся игры среднего уровня сложности в таких областях, как бизнес, политика и повседневная жизнь. По отношению к таким играм можно использовать два подхода. Первый сводится к применению компьютерных программ для построения деревьев и расчета решений[15]. С другой стороны, многие игры среднего уровня сложности решаются посредством логического анализа дерева игры без построения самого дерева. Проиллюстрируем этот подход на примере игры в одном из ТВ-шоу, в котором каждый участник пытается «переиграть, перехитрить и продержаться дольше» всех остальных участников.
Стратегии для участников игры Survivor
В реалити-шоу Survivor канала CBS можно найти много интересных стратегий. В одном из эпизодов «Survivor: Таиланд» две команды (или два племени) сыграли в игру, которая стала прекрасной иллюстрацией применения принципа «смотреть вперед и рассуждать в обратном порядке» в теории и на практике[16]. На игровом поле между племенами установили двадцать один флажок; члены каждого племени должны были по очереди убирать эти флажки. Когда наступала очередь одного из племен, его представитель мог убрать 1, 2 или 3 флажка. Убирать 0 флажков (иными словами, передавать свою очередь) не разрешалось, так же как убирать четыре или больше флажков за один раз. Побеждала команда, которая забирала последний флажок, если он оставался один, или все, если оставалось два или три[17]. Проигравшее племя должно было изгнать своего же представителя, что ослабляло позиции племени в будущих испытаниях. На самом деле проигрыш в данном случае сыграл решающую роль, и в итоге член другого племени выиграл главный приз – миллион долларов. Таким образом, способность выбрать правильную стратегию для этой игры была весьма ценной.
Участники шоу были разделены на два племени – Сук Джай и Чуай Ган; племя Сук Джай делало первый ход. В этом племени начали с того, что убрали 2 флажка, оставив на поле 19 флажков. Прежде чем читать дальше, сделайте небольшую паузу и подумайте: сколько флажков вы решили бы убрать на их месте?
Запишите где-нибудь ответ на этот вопрос и продолжайте читать. Для того чтобы понять, как следует играть в эту игру, и сопоставить правильную стратегию с тем, как на деле сыграли оба племени, обратите внимание на два показательных момента. Во-первых, перед началом игры оба племени получили по несколько минут на обсуждение этого испытания. Один из членов племени Чуай Ган, афроамериканец Тед Роджерс, который был разработчиком программного обеспечения, отметил: «В конце игры мы должны оставить их с четырьмя флажками». Это действительно так: оставшись с 4 флажками, племя Сук Джай должно убрать 1, 2 или 3 флажка. В таком случае племени Чуай Ган останется только дождаться своей очереди, убрать 3, 2 или 1 флажок соответственно – и победить. В племени Чуай Ган правильно поняли и использовали эту возможность: когда оставалось 6 флажков, они убрали два из них.
Но есть еще один показательный момент. На предыдущем ходе, когда племя Сук Джай забрало 3 флажка из оставшихся 9, одна из представительниц этого племени Ши Энн, которая умела четко формулировать мысли и по праву гордилась своими аналитическими способностями, вдруг осознала: «Если Чуай Ган возьмет два флажка, нам конец». Это означало, что племя Сук Джай только что сделало неправильный ход. Что же следовало делать дальше в этой ситуации?
Ши Энн или одному из ее соплеменников следовало бы размышлять так же, как это сделал Тед Роджерс, и попытаться оставить другое племя с четырьмя флажками, но применив эту логику к следующему ходу этого племени. Как оставить другое племя с 4 флажками на его следующем ходе? Оставив его с 8 флажками на предыдущем! Когда это племя заберет 1, 2 или 3 флажка из восьми, вы возьмете 3, 2 или 1 флажок, оставив его с четырьмя флажками, как и планировали. Следовательно, племени Сук Джай необходимо было бы поменяться местами с племенем Чуай Ган и взять только 1 флажок из 9. Аналитический ум Ши Энн начал активно работать, но с опозданием на один ход! По всей видимости, у Теда Роджерса аналитические способности были еще лучше. Но так ли это?
Почему племя Сук Джай оказалось с 9 флажками на предыдущем ходе? Потому что в Чуай Ган убрали с поля 2 флажка из 11 на своем предыдущем ходе. Теду Роджерсу следовало продолжить свои рассуждения на один ход дальше. Племени Чуай Ган нужно было забрать 3 флажка, оставив Сук Джай с 8 флажками – а это проигрышная позиция.
Эти же рассуждения можно продолжить в обратном порядке. Для того чтобы оставить другое племя с 8 флажками, вам следует оставить его с 12 флажками на предыдущем ходе; для этого необходимо оставить его с 16 флажками на ход раньше и с 20 флажками на ход до этого хода. Таким образом, племени Сук Джай следовало начать игру, убрав с игрового поля только 1 флажок, а не 2, как случилось на самом деле. Такой ход обеспечил бы этому племени неизбежную победу, оставив племя Чуай Ган с 20, 16, … 4 флажками на очередных ходах{35}.
А теперь вспомним первый ход племени Чуай Ган. У них было 19 флажков. Если бы в Чуай Ган придерживались своей же логики, им следовало взять 3 флажка, оставив Сук Джай с 16 флажками и тем самым обрекая это племя на неизбежное поражение. Начиная с любого этапа игры, на котором соперник произвел неправильный ход, команда, делавшая очередной ход, могла перехватить инициативу и выиграть. Но племя Чуай Ган тоже играло не идеально{36}.
В таблице показаны как фактические, так и правильные ходы обоих племен на каждом этапе игры. (Запись «Нет хода» означает, что любой ход проигрышный при условии, что соперник делает правильный ход.) Из этой таблицы видно, что практически во всех случаях оба племени делали неправильный выбор. Исключением стал только ход племени Чуай Ган, когда они оказались с 14 флажками, но даже он, скорее всего, был случайным, поскольку на следующем ходе племя убрало с поля 2 флажка из 11, тогда как следовало взять 3 флажка.
Не судите эти племена слишком строго: для того чтобы научиться играть даже в самые простые игры, требуются время и опыт. На своих занятиях мы проводили эту игру парами или в группах студентов и пришли к выводу, что даже студентам первого курса университетов Лиги плюща{37} требуется сыграть три или даже четыре раунда, прежде чем они полностью усвоят логику игры и начнут играть правильно с первого хода. (Кстати, какое число флажков выбрали вы, когда мы попросили вас сделать это, и как аргументировали этот выбор?) Следует отметить, что люди обучаются быстрее, когда наблюдают за игрой со стороны, чем когда играют сами. Возможно, позиция наблюдателя позволяет увидеть общую картину игры и строить свои рассуждения более спокойно, чем в роли участника.
Для того чтобы помочь вам лучше понять логику рассуждений в этой игре, предлагаем первую задачу для тренировки мышления (такие задачи помогут вам отработать навыки стратегического мышления). Ответы вы сможете найти в конце книги, в разделе «Решения».
ЗАДАЧА ДЛЯ ТРЕНИРОВКИ МЫШЛЕНИЯ № 1Позвольте нам изменить правила игры на прямо противоположные: теперь вы выиграете, если заставите другую команду взять последний флажок. Сейчас ваш ход, и у вас 21 флажок. Сколько флажков вы возьмете?
Теперь, когда вы укрепили свое мышление, решив эту задачу, рассмотрим другие элементы стратегии, которая применяется в играх данного класса.
Почему метод обратных рассуждений делает игры разрешимыми
У игры с флажками было одно свойство, которое делало ее полностью разрешимой, – это отсутствие неопределенности любого вида, будь она обусловлена естественным элементом случайности, мотивами и возможностями других игроков или их фактическими действиями. На первый взгляд, это довольно простая идея, и все-таки она требует уточнения и разъяснения.
Во-первых, на любом этапе игры, когда племя должно было сделать свой ход, ему были известны все условия игры, в частности, сколько осталось флажков. Во многих других играх присутствует элемент чистой случайности, которую создает сама природа или боги случайностей. Например, во многих карточных играх дело обстоит так: когда игрок принимает решение, он не знает наверняка, какие карты на руках у других игроков, хотя может делать какие-то предположения на основании их предыдущих действий. В следующих главах рассматриваются игры, в которых присутствует естественный элемент случайности.
Во-вторых, племени, которому предстояло сделать выбор, была известна цель другого племени – одержать победу. Чарли Брауну тоже следовало бы знать, что Люси нравится наблюдать за тем, как он падает на спину. Игроки точно знают цели другого игрока или игроков во многих простых играх и спортивных соревнованиях, но так бывает далеко не всегда в играх, которые люди ведут в бизнесе, политике и в процессе социального взаимодействия. В таких играх мотивы игроков представляют собой сложное сочетание эгоизма и альтруизма, стремления к честности и справедливости, краткосрочных и долгосрочных соображений и так далее. Для того чтобы понять, какой выбор сделают другие игроки на следующих этапах игры, необходимо знать их цели, а если таких целей несколько – какова их приоритетность. Вы можете так и не узнать об этом, поэтому вам придется делать обоснованные предположения. Не стоит думать, что у других людей такие же предпочтения, как у вас или у гипотетического «человека рационального», но вы должны тщательно проанализировать их ситуацию. Поставить себя на место другого человека – достаточно трудная задача, которую часто усложняет ваша эмоциональная привязанность к своим целям и стремлениям. Более подробно на неопределенности данного вида мы остановимся далее в этой главе, а также в других главах книги. Пока же просто обращаем ваше внимание на то, что неопределенность мотивов других игроков – это именно тот вопрос, с которым целесообразно обратиться к независимой третьей стороне – консультанту по вопросам стратегии.
И последнее: участники многих игр сталкиваются с неопределенностью выбора других игроков, которую иногда обозначают термином «стратегическая неопределенность», для того чтобы отличить ее от неопределенности, обусловленной естественной случайностью (как в случае раздачи карт или отскока мяча из-за неровностей поля). В игре с флажками не было стратегической неопределенности, поскольку каждое племя точно знало, какой предыдущий ход сделало другое племя. Однако во многих других случаях игроки действуют одновременно или в такой быстрой последовательности, что один не успевает увидеть ход другого и сделать адекватный ответный ход. В футболе вратарь, которому предстоит отбить пенальти, должен принять решение, в какую сторону двигаться – направо или налево, хотя он не знает заранее, куда прицелится игрок, который будет выполнять пенальти. Хороший футболист до последней микросекунды пытается обмануть вратаря, чтобы у того не осталось времени предпринять необходимые действия. То же самое можно сказать о подачах и обводящих ударах в теннисе и во многих других играх. Каждый участник закрытого аукциона должен принимать решения, не зная о том, какой выбор делают остальные. Иными словами, во многих играх игроки делают ходы одновременно, а не в заранее заданной последовательности. Процесс размышлений, на основании которого участникам таких игр приходится делать свой выбор, в некоторых отношениях более сложен, чем метод обратных рассуждений в играх с последовательными ходами (как игра с флажками): каждый игрок должен понимать, что другие делают осознанный выбор и, в свою очередь, анализируют, как размышляет он, и так далее. В следующих главах пойдет речь о том, как выстроить рассуждения и какими инструментами решения воспользоваться для игр с параллельными ходами. В данной же главе сосредоточимся исключительно на играх с последовательными ходами, к которым относится игра с флажками, а также более сложная игра – шахматы.
Всегда ли метод обратных рассуждений эффективен в реальной жизни?
Построение обратных рассуждений по дереву игры – это правильный подход к анализу и решению игр, в которых игроки делают ходы поочередно. Тот, кто не делает этого (неважно, осознанно или нет), препятствует достижению собственных целей; таким людям следует прочитать нашу книгу или нанять консультанта по вопросам стратегии. Однако это рекомендуемый или стандартный вариант применения метода обратных рассуждений. Имеет ли этот метод определенную эксплицитную или положительную ценность, подобно большинству других научных методов? Иными словами, дает ли применение этого метода правильные результаты в играх, разыгрывающихся в реальной жизни? Исследователи, которые занимаются новыми, увлекательными областями поведенческой экономики и поведенческой теории игр, провели эксперименты, которые позволяют сделать противоречивые выводы.