Вселенная из ничего - Лоуренс Краусс 2 стр.


Тот факт, что общая теория относительности Эйнштейна явно не согласовывалась с тогдашней картиной мироздания, был для него ударом, большим, чем вы можете себе представить, по причинам, которые позволяют мне обойтись без мифа об Эйнштейне и общей теории относительности, который мне всегда докучал. Принято считать, что Эйнштейн работал в изоляции, годами в закрытом помещении, используя ясную мысль и рассудок, и придумал свою красивую теорию независимо от реальности (вероятно, как некоторые струнные теоретики сегодня!). Тем не менее, ничто не может быть дальше от истины.

Эйнштейн всегда глубоко руководствовался экспериментами и наблюдениями. Проводя множество «мысленных экспериментов» в своем сознании и усиленно работая уже более десяти лет, он по ходу изучил новую математику и проработал много ложных теорий, прежде чем, в конечном счете, создал теорию, которая была действительно математически красивой. Однако самый важный момент становления его любви к общей теории относительности был связан с наблюдением. В течение последних лихорадочных недель, когда он заканчивал свою теорию, конкурируя с немецким математиком Давидом Гильбертом, он использовал свои уравнения для расчета предсказания того, что иначе, возможно, казалось бы малопонятным астрофизическим результатом: небольшой прецессии «перигелия» (точки наибольшего приближения) орбиты Меркурия вокруг Солнца.

Астрономы уже давно заметили, что орбита Меркурия немного отклоняется от предсказанной Ньютоном. Вместо идеального эллипса, повторяющего себя, орбита Меркурия испытывает прецессионное движение (что означает, что планета не возвращается точно в ту же точку после каждого оборота, но после каждого оборота ориентация эллипса немного смещается, вычерчивая, в конечном счете, своего рода спиралевидный узор) на невероятно маленькую величину: 43 угловых секунды (примерно 1 / 100 градуса) за столетие.

Когда Эйнштейн выполнил расчет орбиты, используя свою теорию относительности, получилось именно это число. Как сообщал биограф Эйнштейна, Абрахам Пайс: «Я полагаю, это открытие было, несомненно, самым сильным эмоциональным переживанием в научной жизни Эйнштейна, возможно, во всей его жизни». Он утверждал, что у него участилось сердцебиение, как будто «что-то щелкало» внутри. Месяц спустя, когда он описывал другу свою теорию как теорию «несравненной красоты», его удовлетворение математической формой было действительно очевидным, но ни о каком сердцебиении не сообщалось.

Очевидное несоответствие между общей теорией относительности и наблюдениями, относящимися к предполагаемой статичности Вселенной, было, однако, недолгим. (И хотя это действительно заставило Эйнштейна внести изменение в своею теорию, позже он назвал это самой большой своей ошибкой. Но об этом чуть позже.) Все (за исключением некоторых школьных советов в США) теперь знают, что Вселенная не статична, а расширяется, и что расширение началось с невероятно горячего и плотного Большого Взрыва примерно 13,720 млрд. лет назад. Не менее важно, мы знаем, что наша галактика является лишь одной из, возможно, 400 млрд галактик в наблюдаемой Вселенной. Мы, как древние земные картографы, только начинаем в полной мере отображать Вселенную в ее огромных масштабах. Неудивительно, что в последние десятилетия мы стали свидетелями революционных изменений в нашей картине Вселенной.

Открытие, что Вселенная не статична, а расширяется, имеет глубокое философское и религиозное значение, так как это предполагает, что наша Вселенная имела начало. Начало подразумевает создание, а создание разжигает эмоции. Хотя потребовалось несколько десятилетий после открытия в 1929 году нашей расширяющейся Вселенной, чтобы понятие Большого Взрыва получило независимое эмпирическое подтверждение, Папа Пий XII возвестил о нем в 1951 году как о доказательствах в пользу «Книги Бытия». Как он выразился:

Похоже, современной науке одним взглядом через века удалось добыть свидетельство величественного момента начального Fiat Lux [Да будет свет], когда наряду с материей вырвалось из небытия море света и излучения, и элементы делились и перемешивались, и формировались в миллионы галактик. Таким образом, с конкретностью, характерной для физических доказательств, [наука] подтвердила вероятность непредсказуемого возникновения Вселенной, а также обоснованность вывода относительно эпохи, когда мир вышел из рук Творца. Следовательно, создание имело место. Мы говорим: «Следовательно, есть Творец. Следовательно, Бог существует!»

Вся история на самом деле немного более интересна. Фактически, первым человеком, который предложит Большой Взрыв, был бельгийский священник и физик Жорж Леметр. В Леметре сочетались различные профессиональные навыки. Он начал свои исследования в качестве инженера, имел награды как артиллерист в Первой мировой войне, а затем переключился на математику во время учебы на священника в начале 1920-х. Затем он перешел к космологии, изучая ее сначала со знаменитым британским астрофизиком сэром Артуром Стэнли Эддингтоном, прежде чем переехать в Г арвард, и, в конечном итоге, получил вторую докторскую степень в области физики в Массачусетском технологическом институте.

В 1927 году, перед получением второй докторской степени, Леметр фактически решил уравнения Эйнштейна для общей теории относительности и показал, что теория предсказывает нестатичную Вселенную, и фактически означает, что Вселенная, в которой мы живем, расширяется. Эта идея казалась настолько возмутительной, что сам Эйнштейн ярко возразил, заявив: «Ваша математика правильна, но ваша физика безобразна».

Тем не менее, Леметр двигался дальше, и в 1930 году также предположил, что наша расширяющаяся Вселенная на самом деле возникла как бесконечно малая точка, которую он назвал «первозданным атомом», и что ее происхождение представляло собой, с намеком, возможно, на «Книгу Бытия», «день без вчера».

Таким образом, Большой Взрыв, о котором так возвещал Папа Пий, впервые предположил священник. Можно подумать, что Леметр был в восторге от этой папской оценки, но он уже избавился в своем сознании от представления, что эта научная теория имела богословские последствия, и, в конечном счете, удалил абзац в черновике своей работы 1931 г. о Большом Взрыве, в котором отмечался этот вопрос.

Кстати, позже Леметр выразил протест по поводу папского 1951 года доказательства «Бытия» через Большой Взрыв (не в последнюю очередь потому, что он понял, что если позже будет доказано, что его теория неправильна, то утверждение Римско-католической церкви по поводу «Бытия» может быть оспорено). К этому времени он был избран в Папскую академию Ватикана, а позже стал ее президентом. Как он выразился: «Насколько я могу судить, такая теория полностью остается за рамками каких-либо метафизических или религиозных вопросов». Папа никогда не поднимал эту тему публично.

Здесь для нас важный урок. Как признался Леметр, произошел ли Большой Взрыв на самом деле или нет — это научный вопрос, а не теологический. Более того, даже если Большой Взрыв был (что сейчас всецело подтверждено доказательствами), каждый мог бы интерпретировать его по-разному, в зависимости от своих религиозных или метафизических пристрастий. Вы можете предпочитать считать, что Большой взрыв наводит на мысли о творце, если чувствуете такую необходимость, или вместо этого утверждать, что математика общей теории относительности объясняет эволюцию Вселенной от самого ее возникновения, без вмешательства какого-либо божества. Но такие метафизические спекуляции не зависят от физической достоверности самого Большого Взрыва и не имеют отношения к нашему его пониманию. Конечно, когда мы выходим за пределы самого существования расширяющейся Вселенной, чтобы понять физические принципы, которые могут затрагивать ее происхождение, наука может пролить новый свет на эти спекуляции и, как я покажу, она это делает.

В любом случае, ни Леметр, ни Папа Пий не убедили научный мир, что Вселенная расширяется. Скорее, как и в любой хорошей науке, доказательства пришли из тщательных наблюдений, в данном случае сделанных Эдвином Хабблом, который сохраняет для меня большую веру в человечество, потому что сам он начинал как адвокат, а затем стал астрономом.

Хаббл ранее сделал значительный прорыв в 1925 году с новым 100-дюймовым телескопом Хукера в Маунт Вилсон, на то время крупнейшим в мире.

(Для сравнения, мы сейчас строим телескопы более чем в десять раз превышающие его в диаметре и в сто раз больше по площади!) До этого времени с помощью имевшихся телескопов астрономы смогли разглядеть нечеткие изображения объектов, которые не были просто звездами в нашей галактике. Они называли их туманностями, что на латыни по сути означает «туманная вещь» (фактически «облако»). Они также обсуждали, были ли эти объекты внутри нашей галактики или за ее пределами.

Поскольку в то время преобладающим мнением о нашей Вселенной было то, что наша галактика была единственным, что там было, большинство астрономов присоединились к лагерю «в нашей галактике», во главе с известным астрономом Харлоу Шепли из Гарварда. Шепли бросил школу в пятом классе и учился сам, и в конце концов собрался Принстон. Он решил изучать астрономию, выбрав для изучения первую же тему, которую он нашел в учебной программе. В своей фундаментальной работе он показал, что Млечный Путь был намного больше, чем считалось ранее, и что Солнце было не в его центре, а лишь в отдаленном, неинтересном углу. Он был грозной силой в астрономии, и поэтому его взгляды на природу туманностей приобрели значительное влияние.

В первый день наступившего 1925 года Хаббл опубликовал результаты своего двухлетнего исследования так называемых спиральных туманностей, где он смог выделить определенный тип переменных звезд, названных цефеидами, в том числе в туманности, сейчас известной как Андромеда.

Впервые наблюдавшиеся в 1784 году, переменные звезды цефеиды представляют собой звезды, у которых яркость меняется за некоторый регулярный период времени. В 1908 году новоявленный и на тот момент недооцененный будущий астроном, Генриетта Суон Ливитт, была нанята в качестве «computer» (вычислителя) в обсерваторию Гарвардского колледжа. («Computers» были женщины, вносившие в каталог яркости звезд, зарегистрированных на фотопластинах обсерватории; женщинам в то время не разрешалось пользоваться обсерваторным телескопом.) Дочь священника-конгрегационалиста и потомок пилигримов, Ливитт сделала поразительное открытие, которое она еще больше прояснила в 1912 году: она заметила, что существовала постоянная взаимосвязь между яркостью цефеид и периодом их изменений. Таким образом, если бы можно было определить расстояние до одной цефеиды с известным периодом (впоследствии определенное в 1913 году), то измерения яркости других Цефеид с тем же периодом позволило бы определить расстояние до этих других звезд!

Поскольку наблюдаемая яркость звезд понижается обратно пропорционально квадрату расстояния до звезды (свет распространяется равномерно по сфере, площадь которой возрастает как квадрат расстояния, и, таким образом, поскольку свет рассредотачивается на большей сфере, интенсивность света, наблюдаемого в любой точке, убывает обратно пропорционально площади сферы), определение расстояния до далеких звезд всегда было серьезной проблемой в астрономии. Открытие Ливитт произвело революцию в этой области. (Сам Хаббл, который относился пренебрежительно к Нобелевской премии, часто говорил, что работа Ливитт заслуживает эту премию, хотя и был достаточно своекорыстным. Он, возможно, предложил это только потому, что был бы закономерным соискателем на совместную с ней награду за свою более позднюю работу.) И в Шведской королевской академии действительно началось оформление документов, чтобы номинировать Ливитт на Нобелевскую премию в 1924 году, когда стало известно, что она умерла от рака три года назад. Благодаря силе своей личности, умелой саморекламе и мастерству наблюдателя Хаббл стал именем нарицательным, а Ливитт, увы, известна лишь фанатам этой области.

Хаббл сумел использовать свое измерение цефеид и зависимость периода их светимости, обнаруженную Ливитт, чтобы окончательно доказать, что цефеиды в Андромеде и некоторых других туманностях были слишком далеки, чтобы находиться внутри Млечного Пути. Обнаружилось, что Андромеда была другим островом Вселенной, другой спиральной галактикой, практически идентичной нашей, и одной из более чем 100 миллиардов других галактик, которые, как мы теперь знаем, существуют в нашей наблюдаемой Вселенной. Результат Хаббла был настолько однозначным, что астрономическое сообщество (в том числе Ше-пли, который, кстати, к этому времени стал директором обсерватории Гарвардского колледжа, где Ливитт написала свою новаторскую работу) быстро смирилось с тем, что Млечный Путь — это не все, что есть вокруг нас. Неожиданно размер известной Вселенной одним махом расширился, больше, чем за предыдущие века! Ее характер тоже изменился, как изменилось почти все остальное.

После этого впечатляющего открытия Хаббл мог почивать на лаврах, но он охотился за более крупной рыбой или, в данном случае, более крупными галактиками. Измеряя все более слабые цефеиды во все более далеких галактиках, он мог составить карту Вселенной в все более крупных масштабах. Однако когда он это сделал, он обнаружил кое-что другое, что было еще более примечательно: Вселенная расширяется!

Хаббл добился своих результатов, сравнивая расстояния до галактик, полученные им, с другими расстояниями, полученными другим американским астрономом, Весто Слайфером, который измерил спектры света, идущего от этих галактик. Понимание существования и природы таких спектров требует, чтобы я вернулся к самому зарождению современной астрономии.

Одним из наиболее важных открытий в астрономии было то, что вещество звезд и Земли в значительной степени одинаково. А началось все, как и многое в современной науке, с Исаака Ньютона. В 1665 году Ньютон, тогда еще молодой ученый, пропустил тонкий луч солнечного света (который он получил, завесив свою комнату, кроме небольшой дыры, сделанной в оконном ставне) через призму и увидел, что солнечный свет разделился на знакомые цвета радуги. Он заключил, что белый свет от солнца содержит все эти цвета, и он был прав.

Сто пятьдесят лет спустя другой ученый, более внимательно исследовав разложенный свет, обнаружил темные полосы в этих цветах, и сделал вывод, что они появились за счет существования веществ во внешней атмосфере Солнца, которые поглощают свет определенных цветов или длин волн. Эти «линии поглощения», как они стали называться, могут совпадать с длинами волн света, поглощаемыми известными веществами на Земле, в том числе водородом, кислородом, железом, натрием и кальцием.

В 1868 году еще один ученый наблюдал две новые линии поглощения в желтой части солнечного спектра, которые не соответствуют ни одному из известных элементов на Земле. Он решил, что это должно быть связано с каким-то новым элементом, который он назвал гелием. Поколение спустя гелий был обнаружен на Земле.

Рассмотрение спектров излучения, полученных от других звезд, является важным научным инструментом для понимания их состава, температуры и эволюции. Начиная с 1912 года, Слайфер наблюдал спектры света, идущего от различных спиральных туманностей, и обнаружил, что их спектры были похожи на спектры близких звезд — за исключением того, что все линии поглощения были сдвинуты на одинаковую величину длины волны. Это явление было тогда истолковано как обусловленное знакомым «эффектом Доплера», названого в честь австрийского физика Кристиана Доплера, который объяснил в 1842 году, что волны, достигающие вас от движущегося источника, будут растянуты, если источник движется от вас, и сжаты, если он движется к вам. Это проявление эффекта, с которым мы все знакомы, и благодаря которому я обычно вспоминаю карикатуру Сидни Харрис, где два ковбоя, сидя на своих лошадях на равнинах, смотрят на далекий поезд, и один говорит другому: «Мне нравится слышать одинокий гудок железнодорожного свистка, когда параметр частоты изменяется вследствие эффекта Доплера!» Действительно, свисток поезда или сирена скорой помощи звучит выше, если поезд или машина скорой едет к вам, и ниже, если она движется от вас.

Оказывается, такое же явление имеет место для световых волн, как и для звуковых, хотя по несколько иным причинам. Световые волны от источника, движущегося от вас, либо из-за своего локального движения в пространстве, либо из-за продолжающегося расширения пространства, будут растянуты, и поэтому казаться более красными, чем они могли бы быть, поскольку красный — это длинноволновый конец видимого спектра, тогда как волны от источника, движущегося к вам, будут сжиматься и казаться более синими.

Слайфер наблюдал в 1912 году, что линии поглощения света, идущего от спиральных туманностей, почти все были систематично сдвинуты в длинноволновую сторону (хотя некоторые, как от Андромеды, были сдвинуты в более коротковолновом направлении). Он правильно сделал вывод, что большинство этих объектов, следовательно, удаляются от нас со значительными скоростями.

Хаббл мог сравнить свои наблюдения расстояний до этих спиральных галактик (так как они были уже известны) с измерениями Слайфера скоростей, с которыми они удалялись. В 1929 году с помощью сотрудника Маунт-Вилсон, Милтона Хьюмасона (который обладал таким техническим талантом, что получил работу на Маунт Вилсон, даже не имея диплома средней школы), он объявил об открытии замечательной эмпирической зависимости, теперь называемой законом Хаббла: существует линейная зависимость между скоростью удаления галактик и расстоянием до них. А именно, более отдаленные галактики удаляются от нас с более высокими скоростями!

Назад Дальше