Закон сохранения массы: при проведении химической реакции общий вес веществ не меняется.
– Вот как бывает. Дядя Кузя, в лабораторию вошёл человек. Это и есть знаменитый химик Лавуазье?
– Да, это он.
– На нём шёлковая белая рубашка, разноцветная жилетка и штаны до колен, на ногах ботинки с золотыми пряжками.
– Великий химик одет по моде своего времени. Но хоть он и следит за модой, гораздо больше его интересует любимая химия. Сейчас он как раз занялся взвешиванием веществ, которые получились после одной химической реакции.
Учёный положил на правое блюдце весов пробирку с серым порошком, а на левое – маленькие гирьки и что-то записал в толстую тетрадь.
– Дядя Кузя, смотри! Он выглядит очень довольным и счастливым.
– Ещё бы! Весы подтвердили его догадку. Он сжёг в плотно закрытой пробирке металл, который называется оловом. Получилось новое вещество, оно похоже на пепел и тяжелее, чем кусочек металла, который был вначале. Вес увеличился, а значит, к олову что-то присоединилось.
– Что же к нему могло присоединиться, если пробирка была хорошо закрыта?
– А про воздух в пробирке забыл? В нём есть кислород. Вот он-то и соединился с оловом! О газе, который помогает гореть, было известно и раньше, но Лавуазье понял, что этот газ не только помогает горению. Он умеет соединяться с другими веществами. Учёный дал ему имя: оксиген, или в переводе на русский – кислород. Такое же название носит химический элемент, из которого состоит этот необыкновенно важный для нас газ.
– А почему он важный? Потому что мы им дышим?
– Точно! А ещё кислород – самый распространённый элемент на Земле. Больше половины атомов нашей планеты – это атомы кислорода.
– Что-то я не понял. Разве Земля не твёрдая? Где в ней столько газа прячется?
– Кислород встречается не только в виде газа. Этот элемент есть во многих твёрдых и жидких веществах. Его можно найти в океанах и горах, в растениях и животных – везде. Так получается потому, что кислород очень любит вступать во всякие химические реакции. Присоединение кислорода к разным веществам или элементам называется окислением. Если окисление идёт быстро, мы называем его горением.
Кислород – самый распространённый элемент на Земле.
– Дядя Кузя, получается, когда в печке горят дрова, они соединяются с кислородом?
– Совершенно верно! В печке происходит быстрое окисление – соединяются элементы кислород и углерод, которого много в древесине.
– Надо запомнить! Представляешь, пойдём мы как-нибудь в лес, устанем, замёрзнем, до дома далеко, тут я и скажу: «Дядя Кузя, а не устроить ли нам быстрое окисление щепок и веток?»
Быстрое окисление называют горением.
– Любишь ты пошутить, Чевостик! Но я тебя пойму правильно. Только ничего жечь в лесу мы всё равно не будем.
– Я знаю. Лес надо беречь от огня. А у меня вопрос появился: окисление бывает медленным?
– Конечно. Пример – появление ржавчины. Когда железная вещь заржавела, это значит, что элемент железо соединился с кислородом и железо окислилось. Вещества, которые получаются после присоединения кислорода, называются оксидами. С одним из оксидов ты очень хорошо знаком.
– Быть этого не может. Я и слово-то такое слышу первый раз в жизни.
– Верю, что это новое для тебя название. Обычно мы зовём это вещество по-другому – вода.
– Ну и ну! Оказывается, прозрачная вкусная вода, которую я так люблю пить и в которой так весело купаться, – это оксид!
– Точнее, оксид водорода. Хотя химики тоже предпочитают называть воду водой, а не оксидом водорода. Кстати, название «водород» означает, что из него может получиться, или, как раньше говорили, «родиться» вода.
– Дядя Кузя, но если вода состоит из кислорода и водорода, значит, её можно поделить на эти две части?
– Чевостик, ты делаешь успехи в химии! Воду действительно можно разделить на два этих газа.
– Жидкую воду на два газа?! Что-то мне не верится…
– Хочешь убедиться, что так и происходит? Тогда продолжаем путешествие. Времяскок, за работу! Мы отправляемся в Англию начала девятнадцатого века. Город Лондон, лаборатория Королевского института.
ЗаданиеВозьми яблоко и разрежь его на две половинки. Одну половинку надкуси и отложи в сторону, а из другой попроси родителей выжать несколько капель яблочного сока.
Возьми кисточку и на листе бумаги нарисуй яблочным соком несколько полосок или весёлых рожиц. Какого цвета они получились? Теперь прогладь лист горячим утюгом. А теперь какого цвета рисунки? Они стали светло-коричневыми, потому что при высокой температуре произошло быстрое окисление железа, которое содержится в яблочном соке.
Часа через два посмотри на вторую половинку яблока. Какого она стала цвета? С ней произошло такое же окисление, только гораздо медленнее.
В лаборатории Гемфри Дэви Разложение воды
Ещё одна лаборатория. В ней уже знакомые нам колбы, пробирки, весы. Но молодой учёный занят не ими, а странной штуковиной. Снизу – деревянная подставка, сверху – крышка из дерева, а между ними – столб из круглых плоских кусков металла, которые лежат один на другом, как высоченная стопка блинчиков. К верху и низу этой стопки приделаны длинные верёвки, или провода. Надо узнать, что это такое.
– Дядя Кузя, что это за сооружение?
– Далёкий предок современных батареек, на которых в наши дни работают фонарики, будильники, сотовые телефоны и другие нужные и полезные вещи. Наши батарейки просто малютки по сравнению со старинными, но и те и другие делают одно и то же – дают электрический ток.
– Ого! А как этот прадедушка батареек называется?
– Вольтов столб. В честь придумавшего его итальянского учёного Алессандро Вольта.
– Интересно, что с этим столбом будет делать химик, который здесь работает? Подключит к нему какую-нибудь огромную лампочку?
– До изобретения лампочек ещё очень далеко. Мы находимся во времени, когда электричество только-только открыли и пока не придумали, как его использовать в обычном доме. Но, несмотря на это, электричество уже приносит людям пользу. Оказалось, что с его помощью можно изучать вещества. И даже открывать новые элементы, как это сделал химик, которого мы видим перед собой. Его зовут Гемфри Дэви.
– А какие элементы он открыл?
– Об этом я расскажу чуть позже. А сейчас нужно быть внимательными. Учёный готовится повторить один опыт. Его уже делали другие химики, но Дэви хочет сам разложить воду на два газа.
– Кислород и водород!
Учёный взял стеклянную банку с водой. Опустил в неё один из проводов, которые отходят от огромной батарейки. Пока ничего не происходит. Теперь он опустил в воду второй провод, и сразу всё изменилось! У концов проводов вода бурлит, в ней появились пузырьки газа.
– Дядя Кузя, вода закипела?
– Тогда пар снова бы превратился в воду. Но это не так. Газы, которые выделяются на концах двух проводов, можно собрать в разные пробирки, а потом изучить. Тогда станет ясно, что один из них – кислород. Его легко узнать. Если внести в этот газ еле тлеющую, почти потухшую щепку, она сразу вспыхнет ярким пламенем.
– Потому что кислород – лучший друг горения!
– А если поджечь второй газ, то он сам будет гореть голубым пламенем. Это водород. Ты уже знаешь, что кислород – самый распространённый элемент на нашей планете Земля. А вот водород – чемпион во всей Вселенной: атомов водорода в ней намного больше, чем атомов других элементов. Можно сказать, что из водорода сделаны звёзды, да и между звёздами тоже можно найти этот элемент.
Какие все элементы разные! У каждого – свой характер
– Вот это да! Далёкие звёзды сделаны из водорода! Наверное, он самый удивительный элемент на свете!
– Каждый элемент по-своему удивителен. Например, элементы, которые открыл Гемфри Дэви. Сделать это открытие ему помогло электричество. Учёный подумал, что с помощью Вольтова столба можно разделить на составные части не только воду. Он не ошибся. Действуя электричеством на вещества, которые называются щёлочами, химик получил два новых элемента – металлы калий и натрий.
– А что в них такого удивительного?
– Оба этих металла – мягкие, их можно легко резать ножом. И они такие лёгкие, что не тонут в воде.
– Неужели они на ней плавают, как кусочки дерева?
– Не только плавают. Между ними и водой сразу же начинается реакция. Вообще и натрий, и калий очень любят вступать во всякие химические реакции. Когда они реагируют с водой, из неё выделяется водород. Пузырьки этого газа толкают кусочек натрия, и кажется, что он с шипением бегает по воде! Ну а калий устраивает ещё более яркое представление: когда он вступает в реакцию с водой, он так нагревается, что выделяющийся при этом водород начинает гореть ярко-фиолетовым огнём!
– А что в них такого удивительного?
– Оба этих металла – мягкие, их можно легко резать ножом. И они такие лёгкие, что не тонут в воде.
– Неужели они на ней плавают, как кусочки дерева?
– Не только плавают. Между ними и водой сразу же начинается реакция. Вообще и натрий, и калий очень любят вступать во всякие химические реакции. Когда они реагируют с водой, из неё выделяется водород. Пузырьки этого газа толкают кусочек натрия, и кажется, что он с шипением бегает по воде! Ну а калий устраивает ещё более яркое представление: когда он вступает в реакцию с водой, он так нагревается, что выделяющийся при этом водород начинает гореть ярко-фиолетовым огнём!
– А почему огонь фиолетовый?
– Таким его делают частицы калия. Окрашивать огонь в разные цвета умеют и другие элементы. Это умение используют, когда подбирают химические вещества для салютов. Для зелёно-голубого огня нужно вещество, в котором есть медь. Элемент литий сделает салют ярко-красным, а натрий – жёлтым.
Реакции калия и натрия с водой выглядят совсем по-разному.
– Вот в чём дело! Я давно хотел узнать, почему салют такой разноцветный! Оказывается, надо учить химию!
– Кстати, у костра или свечи огонь жёлтого цвета тоже из-за веществ, в которых есть натрий. Одно из них ты очень хорошо знаешь. Мы пользуемся им каждый день.
– Что же это за вещество?
– Соль.
– Та, которой мы солим суп, картошку и салат?
– Она самая.
– И в ней есть элемент натрий?
– Есть. Но не один. А в паре с элементом по имени хлор. Хлор тоже очень любит вступать во всякие реакции. Поэтому в природе в чистом виде его не найти – он обязательно уже успел соединиться с каким-нибудь другим элементом.
– Хлор похож на человека, у которого много друзей – он не любит быть один.
– Хорошее сравнение. Среди элементов есть и такие, которые ни с кем не хотят дружить. Элемент золото редко вступает в химические реакции, поэтому золотые монеты и украшения не портятся от времени. Но самый одинокий элемент – это гелий: что с ним ни делай, он упорно отказывается с кем-либо соединяться! Зато газ гелий приносит радость ребятишкам – им наполняют воздушные шары. Гелий легче воздуха, поэтому, если отпустить нитку, шарик улетит в небо.
– Какие же все элементы разные: хлор дружит почти со всеми элементами, а гелию никто не нужен, ему и одному хорошо. У каждого элемента свой характер!
– Элементы действительно очень разные. Но оказалось, что их можно расставить по порядку. Как это сделать, понял гениальный русский химик Дмитрий Иванович Менделеев. Его открытие называется Периодический закон Менделеева. Этот закон можно изобразить в виде таблицы, которая называется таблица Менделеева. Это настолько важное открытие, что ему и его автору даже поставили памятник.
– Памятник открытию?!
– Да. И мы прямо сейчас к нему отправимся. Настраиваю времяскок. Наше время, город Санкт-Петербург, сквер в центре города.
ЗаданиеВозьми несколько камешков и разноцветные детали конструктора Lego. Пусть детали одного цвета будут атомами кислорода, а другого – атомами углерода. В природе атомы могут легко соединяться друг с другом, так же как детали конструктора. Соедини две детали кислорода и одну деталь углерода, и у тебя получится молекула углекислого газа. Мы все его выдыхаем, когда дышим, и ты тоже!
Пусть камешек поменьше будет атомом гелия, а побольше – атомом неона. Этот газ ярко светится красным светом, когда через него проходит ток. Ты мог это видеть в вывесках на городских улицах. Присоедини один газ к другому. Получилось? А к кислороду? Ничего не выходит! Вот так же и в природе – гелий и неон не вступают в химические реакции.
Таблица Менделеева Последовательность элементов
Какое хорошее место! Зелёная травка. Около дома растёт несколько деревьев, под ними – скульптура-изображение человека, который сидит в кресле. У него высокий лоб, волосы до плеч и широкая борода. Кажется, что он думает о чём-то важном.
– Дядя Кузя, это учёный Менделеев?
– Верно. Перед нами его скульптурный портрет. А за ним, прямо на стене дома, выложена из разноцветных камней знаменитая таблица Менделеева.
– Она похожа на огромный лист бумаги в клеточку. В каждой клетке – цифры, буквы. Но что они значат?
– Буквы – это короткие названия элементов. Самый первый, крайний слева в верхней строке, – водород.
– Но там стоит буква «Эн».
– Короткие имена химических элементов пишут не русскими, а латинскими буквами. Латинское название водорода начинается с буквы «Аш», которая пишется так же, как наша буква «Эн». Во второй строке можно найти ещё одного нашего знакомца – кислород. Он обозначен буквой «О», от слова «оксиген».
– Понятно. А почему они не стоят рядом? И почему первый – водород, а не кислород?
– Место каждого элемента определил Менделеев. Над тем, как правильно расставить элементы в своей таблице, он думал целых двадцать лет. А началось всё с того, что учёный решил написать учебник химии. Эту науку он знал очень хорошо, а вот рассказать о ней так, чтобы всё было ясно, не получалось.
– Что же ему мешало?
– Представь, как трудно научить математике, если неизвестно, в каком порядке идут цифры? И что больше – единица или двойка? Все химические вещества состоят из элементов, а значит, их тоже надо выстроить по порядку.
– Но как это сделать?
– Помогли знания других учёных. Учёные – удивительные люди. Они могут понять, из чего состоят далёкие звёзды, разобраться, почему небо синего цвета, а листья – зелёные, придумать, как полететь в космос. А ещё учёные смогли узнать, сколько весит один-единственный атом! Оказалось, что у атомов разных элементов вес тоже разный. Самый лёгкий атом – у водорода.
– Может быть, поэтому Менделеев и поставил его на первое место?
– Точно. Он расставил все элементы по весу их атомов, от самого лёгкого к самому тяжёлому. И тут выяснилась ещё одна интересная вещь: в этом строю через одинаковый промежуток – учёные говорят «периодически» – появляются похожие элементы. Это как у чисел. Следи внимательно.
И дядя Кузя достал из кармана свой блокнот со страницами в клеточку и начал писать цифры. В первом ряду в каждой клетке расположились цифры от 1 до 10, прямо под ними, вторым рядом, он поместил цифры с 11 до 20, в третьем – от 21 до 30.
– Смотри, Чевостик: цифры 12 и 22 оказались под двойкой, под четвёркой – 14 и 24.
– А 17 и 27 – под семёркой!
– И обрати внимание: цифры, оказавшиеся друг под другом, в одной колонке, похожи.
– А ведь правильно! Если к 1, или к 11, или к 21 прибавить 9, то каждый раз в сумме получится цифра, у которой на конце 0! То же самое, если к 7, 17 и 27 прибавить 3!
– Ты у меня умница, Чевостик! Вот и Менделеев точно так же разместил элементы в несколько строчек. В каждой по восемь элементов. И, удивительное дело, похожие элементы оказались один под другим, попали в одну колонку: калий под натрием, а под хлором – очень похожий на него элемент йод.
– Дядя Кузя, это очень интересно, но зачем это нужно? Таблицу Менделеева можно как-то использовать?
– Конечно! Менделеев сразу увидел, что в его таблице не хватает десяти элементов. И что ты думаешь? Вскоре они были найдены! С тех пор учёные открыли ещё немало элементов, и снова этому помогла таблица Менделеева! А ещё она подсказывает, какие вещества можно получить из каждого элемента. В каких химических реакциях он будет участвовать. И вообще, чего от него ждать. Это очень нужные знания. Благодаря им учёные создают новые вещества: материалы, сплавы, лекарства.
– А как эти новые вещества получаются? Их собирают из разных элементов, как из конструктора?
– Всё несколько сложнее. Чтобы элементы правильно соединились, им нужно помочь. Одни вещества для этого надо нагреть, другие, наоборот, охладить – в общем, подобрать правильные условия реакции…
ЗаданиеОдну периодическую закономерность ты можешь пронаблюдать сам, если посмотришь на календари последних двенадцати лет. Попроси родителей показать их тебе на компьютере. Выпиши года по порядку в три строки – по четыре года в каждой строчке. Для каждого года проверь по календарю количество дней в феврале и закрась красным те года, в которые февраль длиннее обычного.
Ты увидишь, что раз в четыре года в феврале оказывается 29 дней. Года, в которых февраль длиннее, называются високосными.
Независимо от того, в каком году ты читаешь эту книгу, у тебя получится периодическая система високосных годов, в которой года с длинным февралём будут в одном столбце.