Как бы то ни было, метод Монте-Карло быстро прижился в науке. Он позволял экономить, обходясь без дорогостоящих экспериментов. Именно необходимость создания достаточно точных симуляторов метода Монте-Карло была той движущей силой, благодаря которой стали активно развиваться компьютеры. Вычислительные машины становились все быстрее и эффективнее. В то же время пришествие эры дешевых вычислений означало, что эксперименты в стиле метода Монте-Карло, различные имитации и модели могли все шире применяться в химии, астрономии и физике, не говоря уже об инженерии и анализе рынков. В настоящее время (по прошествии всего двух поколений) метод Монте-Карло настолько доминирует в некоторых научных областях, что молодые ученые даже не подозревают, насколько их работа не похожа на традиционную теоретическую или экспериментальную науку. Простая уловка, временная мера – использование атомов урана и плутония в качестве абака, на котором вычисляются ядерные реакции, – превратилась в незаменимый инструмент научного познания. Метод Монте-Карло не просто завоевал науку; он укрепился, усвоился и переплелся с другими методами.
Но в 1949 году такая трансформация еще не свершилась. На первом этапе существования метод Монте-Карло помогал разрабатывать новые поколения ядерного оружия. Фон Нейман, Улам и другие ученые такого же склада приходили в огромные залы, напоминавшие университетские аудитории, где стояли компьютеры. Там они загадочно спрашивали, можно ли запустить несколько программ, и занимались этим с полудня до утра. В эти мертвые часы они создавали «суперснаряды» – многоступенчатые машины в тысячи раз мощнее обычных атомных бомб. В суперснарядах плутониевые и урановые заряды применялись для запуска ядерного синтеза в жидком сверхтяжелом водороде – именно благодаря таким реакциям горят звезды. Это сложный процесс, который мог навсегда остаться лишь в виде описания на страницах секретных военных отчетов. О нем бы не узнали даже операторы ракетных пусковых шахт, если бы не вычислительные машины. Историк Джордж Дайсон красиво охарактеризовал технологическую историю того десятилетия фразой: «компьютеры привели к бомбам, а бомбы – к компьютерам».
Проделав массу работы, чтобы правильно спроектировать супербомбу, ученые достигли успеха в 1952 году – атолл Эниветок в Тихом океане был стерт с лица земли при испытании водородной бомбы. Этот взрыв вновь продемонстрировал безжалостную безупречность метода Монте-Карло. Тем не менее инженеры-атомщики уже разрабатывали устройства пострашнее водородных бомб. Атомная бомба может погубить вас двумя способами. Маньяк, желающий просто погубить десятки тысяч людей и сровнять с землей целый город, может удовлетвориться обычной «одноступенчатой» атомной бомбой. Ее проще сконструировать, а пылающий ядерный гриб удовлетворит стремление маньяка к театральности массового убийства. Не менее зрелищными будут и непосредственные эффекты взрыва – спонтанные торнадо и темные силуэты жертв, которые останутся на стенах. Но достаточно терпеливый маньяк, который хочет совершить непоправимое зло, отравить все колодцы и просолить почву, сделав ее бесплодной, подорвет грязную атомную бомбу, начиненную кобальтом-60.
Основным поражающим фактором обычной ядерной бомбы является высокая температура. Грязная атомная бомба наиболее опасна из-за сильного гамма-излучения. Гамма-лучи возникают в результате стихийных ядерных реакций. Под действием такого излучения человек не просто сильно обгорает – гамма-лучи проникают в костный мозг и повреждают хромосомы белых кровяных клеток. Эти клетки либо погибают сразу, либо перерождаются в раковые, либо просто вырастают до огромных размеров. В результате они деформируются и не могут бороться с инфекциями. При всех ядерных взрывах выделяется определенное количество радиации, но в грязной атомной бомбе именно радиация является основным поражающим фактором.
Но даже эндемичная форма лейкоза не кажется «достаточно убийственной», если судить по некоторым бомбам. Лео Сцилард, еще один беженец из Европы, участвовавший в Манхэттенском проекте, был тем самым физиком, который, к собственному сожалению, еще в 1933 году сформулировал идею о самоподдерживающейся цепной ядерной реакции. Сцилард – мудрый и трезвомыслящий человек – в 1950 году рассчитал, что достаточно распылить по три грамма кобальта-60 на каждую квадратную милю земной поверхности, чтобы спровоцировать сильнейшее гамма-излучение, которое уничтожит весь человеческий род. Это был бы ядерный вариант того смертельного облака, которое когда-то погубило динозавров. Модель Сциларда представляла собой многоступенчатую боеголовку, обложенную слоем кобальта-59. Ядерная реакция распада, протекающая в плутонии, запускает реакцию ядерного синтеза в водороде. Разумеется, сразу после начала ядерного синтеза испарится и кобальтовая обкладка, и все остальное. Но перед этим на атомном уровне произойдет кое-что еще. Атомы кобальта впитают в себя нейтроны, выделяющиеся при реакциях синтеза и распада, и наступит стадия, называемая «подсаливанием». В результате подсаливания стабильный кобальт-59 превращается в кобальт-60, осаждающийся, как пепел.
Очень многие элементы способны испускать гамма-лучи, но кобальт в этом отношении особенный. Обычные атомные бомбы можно держать в специальных шахтах, поскольку продукты распада их топлива очень быстро расходуют запас гамма-лучей, оставаясь сравнительно безвредными. В дни атомных взрывов 1945 года в Хиросиме и Нагасаки все же можно было выжить. Другие элементы поглощают лишние нейтроны, подобно алкоголику, постоянно жаждущему догнаться стопочкой. Элемент «заболевает» на некоторое время, но не на века. В таком случае, после взрыва радиоактивный фон уже не достигнет запредельных значений.
Кобальтовая бомба дьявольски оказывается в середине между крайностями. Это один из редких случаев, когда золотая середина является наиболее пагубным вариантом. Атомы кобальта-60 осаждаются в грунте, как крошечные фугасы. Достаточно много таких «мин» сработает сразу, так что останется только спасаться бегством, но и через пять лет еще добрая половина кобальта будет готова «рвануть». Такой постоянный поток гамма-шрапнели означает, что взрыв кобальтовой бомбы нельзя «переждать» или вынести. Зараженная территория не очистится на протяжении целой человеческой жизни. Именно поэтому кобальтовые бомбы вряд ли могут применяться в военных целях, так как армия завоевателей просто не сможет оккупировать район бомбардировки. Но вряд ли это остановит настоящего маньяка, желающего оставить за собой выжженную землю.
Следует отметить в защиту Сциларда: он надеялся, что его кобальтовая бомба – первая настоящая «адская машина» – никогда не будет создана, и (насколько известно) ни одна страна не пыталась сконструировать такое оружие. Сцилард изложил эту идею, чтобы продемонстрировать безумность самой идеи ядерных войн, но общество ухватилось за нее. Например, в фильме Стэнли Кубрика «Доктор Стрейнджлав, или Как я перестал бояться и полюбил бомбу» Советский Союз обладает кобальтовыми бомбами. До выкладок Сциларда ядерное оружие казалось пусть и грозным, но не апокалипсическим. Сцилард надеялся, что после его скромного предупреждения люди одумаются и прекратят клепать боеголовки. Нисколько. Вскоре после того, как название «прометий» стало официальным, у Советского Союза появилась своя атомная бомба. Правительства США и СССР вскоре одобрили более чем удручающую доктрину «взаимного гарантированного уничтожения». По-английски она обозначается аббревиатурой «MAD», это слово переводится «безумный». Суть этой доктрины сводится к тому, что в ядерной войне, независимо от ее исхода, поражение потерпят обе стороны. Так или иначе, эта доктрина, идиотская с этической точки зрения, действительно предотвратила использование ядерных боеголовок в качестве тактического вооружения. Но международная напряженность стала такой сильной, что началась настоящая холодная война. Это противостояние настолько пронизало наше общество, что отразилось даже на совершенно пацифистской таблице Менделеева.
7. Расширение таблицы и холодной войны
В 1950 году в бульварном разделе газеты New Yorker, который называется «Притча во языцех» (Talk of the Town), появилась любопытная заметка[60]:
«В наши дни новые атомы появляются с удивительной, если не сказать – пугающей частотой. Недавно в калифорнийском университете Беркли ученые открыли элементы № 97 и 98, назвав их соответственно берклий и калифорний. Эти названия, на наш взгляд, являются исключительно недальновидными и недооценивают общественный резонанс этих открытий. Несомненно, талантливые калифорнийские ученые со дня на день откроют еще пару элементов, но они уже навсегда потеряли шанс обессмертить свою организацию в периодической системе. А как бы звучало: “университий” (97), “офий” (98), “калифорний” (99), “берклий” (100)»[61].
7. Расширение таблицы и холодной войны
В 1950 году в бульварном разделе газеты New Yorker, который называется «Притча во языцех» (Talk of the Town), появилась любопытная заметка[60]:
«В наши дни новые атомы появляются с удивительной, если не сказать – пугающей частотой. Недавно в калифорнийском университете Беркли ученые открыли элементы № 97 и 98, назвав их соответственно берклий и калифорний. Эти названия, на наш взгляд, являются исключительно недальновидными и недооценивают общественный резонанс этих открытий. Несомненно, талантливые калифорнийские ученые со дня на день откроют еще пару элементов, но они уже навсегда потеряли шанс обессмертить свою организацию в периодической системе. А как бы звучало: “университий” (97), “офий” (98), “калифорний” (99), “берклий” (100)»[61].
Ученые из Беркли, лидерами которых выступали Гленн Сиборг и Альберт Гиорсо, не менее язвительно ответили, что выбранные ими названия были «упреждающими», чтобы после появления в таблице «университия» (97) и «офия» (98) какой-нибудь нью-йоркский физик не увековечил в таблице названия «ньюий» и «йоркий» в клетках 99 и 100.
Редакция New Yorker парировала: «Мы уже занимаемся синтезом ньюия и йоркия. Спасибо, названия у нас уже есть».
Эта остроумная пикировка помогает представить, какой интересной была в те годы научная работа в Беркли. Ученые из Калифорнийского университета, расположенного в этом городке, создавали новые элементы – в нашей Солнечной системе этого не происходило с тех пор, как миллиарды лет назад взорвалась наша сверхновая. Да что там, они обставили сверхновую, создав такие элементы, которых не существует в природе. Но никто – по крайней мере, из этих ученых – не мог предположить, какая ожесточенная борьба вскоре развернется не только за синтез новых элементов, но даже за право их назвать. На этом направлении развернулся новый фронт холодной войны.
Говорят, Гленн Сиборг обладал самой длинной в истории профессиональной характеристикой. Заслуженный проректор университета Беркли. Лауреат Нобелевской премии по химии. Сооснователь спортивной лиги «Рас-10». Консультант президентов Кеннеди, Джонсона, Никсона, Картера, Рейгана и Буша-старшего по атомной энергетике и гонке ядерных вооружений. Руководитель группы ученых в Манхэттенском проекте. И прочее, и прочее. Но первое крупное научное достижение Сиборга, открывшее ему дорогу ко всем остальным регалиям, оказалось результатом удачного стечения обстоятельств.
В 1940 году Эдвин Макмиллан, коллега и друг Гленна Сиборга, удостоился давно ожидаемой славы, получив первый трансурановый элемент. Макмиллан назвал его нептунием – в честь планеты Нептун, следующей за Ураном. Но Макмиллан жаждал большего. Он заметил, что атомы девяносто третьего элемента довольно неустойчивы и легко теряют один электрон, превращаясь в элемент номер 94. Он всерьез принялся искать доказательства существования следующего элемента. Макмиллан подробно знакомил со своей работой молодого Сиборга – сухощавого двадцативосьмилетнего мичиганца, выросшего в шведской иммигрантской общине. Макмиллан не только рассказывал Сиборгу о ходе работ, но даже обсуждал с ним конкретные методы, когда двое ученых ходили в душ после тренажерного зала.
Но в 1940 году назревали не только открытия новых элементов. Как только американское правительство решило посодействовать соперникам стран Оси во Второй мировой войне, пока не афишируя этого, государство принялось выдергивать на военные проекты (например, разработку радара) научных звезд. В их числе оказался и Макмиллан. Сиборг в те годы еще был недостаточно знаменит, чтобы попасть в число избранных, поэтому он остался в Беркли в одиночестве, со всем оборудованием Макмиллана и в точности зная, в каком направлении тот собирался развивать исследования. Сиборг решил не терять времени, полагая, что это, возможно, его единственный шанс прославиться. Вместе с коллегой они собрали крошечный образец девяносто третьего элемента. Отфильтровав нептуний, они тщательно просеяли радиоактивное вещество, разложив лишний нептуний и получив совсем микроскопический химический остаток. Исследователи доказали, что этот остаток действительно состоит из девяносто четвертого элемента. При помощи мощного химического агента они отрывали от атомов электрон за электроном, пока эти атомы не приобрели наивысший электрический заряд, когда-либо зафиксированный у химического элемента (+7). Уже с момента открытия казалось, что девяносто четвертый элемент – особенный. Продолжая традицию, связанную с наименованием элементов в честь все более далеких тел Солнечной системы, – и думая, что девяносто четвертый элемент является последним, который можно синтезировать, – ученые назвали его плутонием.
В 1942 году Сиборг, внезапно ставший знаменитостью, получил вызов на работу в Чикаго в одном из подразделений Манхэттенского проекта. Он взял с собой студентов, а также одного техника, настоящего супер-ассистента, которого звали Эл (Альберт) Гиорсо. Гиорсо и Сиборг обладали совершенно противоположными темпераментами. На фотографиях мы неизменно видим Сиборга в костюме – даже в лаборатории. Гиорсо же неловко чувствовал себя во всем парадном, предпочитая носить жилет поверх рубашки с расстегнутой верхней пуговицей, а также толстые очки в черной оправе, и обильно напомаживал волосы. Нос и подбородок у Гиорсо были острые. Кроме того, в отличие от Сиборга, Гиорсо терпеть не мог политический бомонд. Гиорсо отличался некоторым ребячеством и доучился только до степени бакалавра, не желая далее грызть гранит науки. Тем не менее, польщенный приглашением, Гиорсо поехал вместе с Сиборгом в Чикаго, чтобы избавиться от монотонной работы – в Беркли он занимался только сборкой детекторов радиоактивности. Как только он прибыл на место, Сиборг сразу же нашел ему занятие – собирать детекторы радиоактивности.
Тем не менее Сиборг и Гиорсо сработались. Когда после войны они оба вернулись в Беркли (и тот, и другой обожали Калифорнийский университет), они начали синтезировать тяжелые элементы именно «с удивительной, если не сказать – пугающей частотой», как отметили журналисты New Yorker. Другие журналисты сравнивали химиков, открывавших новые элементы, с охотниками XIX века, ходившими на крупную дичь. Действительно, эти исследователи завораживали химиков-любителей, выставляя на всеобщее обозрение все новых экзотических «тварей». Если не считать такое сравнение преувеличением, то самыми упорными охотниками периодической системы (вооруженными огромными слонобоями, как Эрнест Хемингуэй или Теодор Рузвельт), были именно Сиборг и Гиорсо. Они открыли больше элементов, чем кто-либо еще, и расширили периодическую систему практически на одну шестую.
Их сотрудничество началось в 1946 году, когда Сиборг, Гиорсо и другие принялись бомбардировать чувствительный плутоний радиоактивными частицами. В этих опытах в ход шли не нейтроны, а альфа-частицы. Каждая альфа-частица состоит из двух протонов и двух нейтронов. Альфа-частицы имеют заряд, поэтому их проще разгонять до больших скоростей и направлять куда следует – не то что инертные нейтроны. Этим они напоминают борзых, которых дразнят механическим кроликом. Кроме того, когда альфа-частицы вреза́лись в плутоний, ученые одним ударом сразу получали два элемента, поскольку девяносто шестой элемент (атом плутония + 2 протона) распадался до элемента № 95, извергая один протон.
Физики, работавшие под руководством Сиборга и Гиорсо, будучи первооткрывателями девяносто пятого и девяносто шестого элементов, получили право назвать их (эта неофициальная традиция вскоре привела к ожесточенной путанице).
Они решили окрестить новые элементы «америций» в честь Америки и «кюрий» в честь Марии Кюри. Сиборг, немного отступив от своего строгого имиджа, анонсировал открытие новых элементов не в научном журнале, а в детской радиопередаче, которая называлась Quiz Kids. Не по годам развитый карапуз поинтересовался у мистера Сиборга (смех в зале), не открыл ли тот в последнее время новых элементов. Сиборг ответил, что действительно открыл, и сказал юным радиослушателям, чтобы те попросили школьных учителей выбросить устаревшие варианты таблицы Менделеева. «Судя по письмам, которые я получал от маленьких детей, – вспоминал Сиборг в своей автобиографии, – учителя относились к такой идее довольно скептически».
Команда в Беркли продолжала эксперименты с бомбардировкой элементов альфа-частицами и в 1949 году открыла берклий и калифорний – об этом я писал выше. Гордые такими названиями, в надежде получить заслуженное признание, физики пригласили членов мэрии города Беркли отпраздновать это событие. Чиновники из мэрии восприняли новость с плохо скрываемой зевотой – ни мэр, ни его контора не понимали, что такого особенного может быть связано с периодической системой. Равнодушие муниципалитета разочаровало Гиорсо. До сих пор Альберт выступал за то, чтобы назвать девяносто седьмой элемент берклием и выбрать для него химический символ Вт, называя этот металл «подлецом» за те сложности, которые были связаны с его открытием. Возможно, Гиорсо забавляла мысль о том, что любой американский подросток, падкий на «шутки ниже пояса», увидит в таблице на стене химического класса символ Вт, соответствующий берклию, и захихикает. К сожалению, коллегам удалось переубедить Гиорсо, и берклий получил символ Bk[62].